Физические основы вытеснения нефти водой и газом из пласта.

Введение

Первые результаты экспериментальных и промысловых исследований по применению поверхностно-активных веществ как добавок при заводнении нефтяных пластов опубликованы в США в 40-х, 50-х годах. В нашей стране эта проблема изучается более 30 лет и нашла свое отражение в работах П.А. Ребиндера, Г.А. Бабаляна, К.Ф. Жигача, М.М. Кусакова, Ш.К. Гиматудинова, Ф.И. Котяхова, В.В. Девликамова, И.Л. Мархасина, И.И. Кравченко, М.А. Гмана, А.Б. Тумасяна и др.

За это время разработаны в основном физико-химические и технологические основы метода, обоснованы приближенные критерии применимости ПАВ, произведены испытания метода в различных геолого-промысловых условиях.

Однако до настоящего времени многие аспекты этой проблемы до конца не изучены, требуют уточнения и дальнейшего исследования.

Механизм нефтеотдачи при воздействии водных растворов ПАВ на остаточную нефть в коллекторах различных типов сложен и многогранен, что предопределяет необходимость дальнейших экспериментальных и промысловых исследований на современной научной основе.

Актуальность проблемы. В XX веке произошло 15-ти кратное увеличение уровня потребления энергоресурсов, основную долю в которых составляют нефть и газ. В ближайшей перспективе доминирующее положение, как основного источника моторных топлив и сырья нефтехимических производств, сохранится за нефтью. Вместе с тем, опережающая добыча из активныхзапасов приведет к тому, что через 20 лет основной объем мировой добычи до 70 % будет обеспечиваться за счет трудноизвлекаемых запасов нефти. Уже сегодня в России на большинстве крупнейших нефтяных месторождений, вступивших в позднюю стадию разработки, доля трудноизвлекаемых запасов увеличилась более чем в 10 раз и продолжает увеличиваться.

Ограниченное применение современных технологий повышения нефтеотдачи приводит к тому, что коэффициент извлечения нефти (КИН) сокращается за десятилетие на 3-4 %. Вместе с тем, рост КИН только на 1 % дал бы России прирост годовой добычи в объеме не менее 10-20 млн т, что равносильно открытию нового месторождения. Потому уже сегодня необходимо интенсивно внедрять новые передовые технологии, направленные на вовлечение в разработку всех типов остаточных нефтей на месторождениях, вступивших в завершающую стадию эксплуатации, и эффективное освоение месторождений тяжелых высоковязких нефтей.

Поэтому исследование направлено на решение актуальной задачи - разработку комплекса технологий для повышения нефтеотдачи пластов, увеличения дебита добывающих скважин.

Объектом исследования является качественные показатели и эффективность вытеснения нефти раствором ПАВ.

Предметом исследования в данной работе является эффективность вытесняющей способности растворами ПАВ.

Цели и задачи исследований. Целью настоящих исследований является возможность повышения эффективности разработки месторождений высоковязких нефтей с применением поверхностно-активных веществ. Увеличение коэффициента извлечения высоковязкой нефти в условиях неоднородных по проницаемости пластов должно обеспечиваться за счет внедрения технологии закачки поверхностно-активных веществ (ПАВ).

В задачи исследований входило:

изучить методы увеличения нефтеотдачи пластов терригенных пород;

разработка новых технологий повышения нефтеотдачи за счет воздействия на пласт путем регулирования неионогенных ПАВ;

изучить механизм вытеснения нефти из пористой среды с применением ПАВ

определить поверхностное натяжение раствора поверхностно-активного вещества Неонол АФ9-12 разных концентраций;

определить межфазное натяжение раствора поверхностно-активного вещества Неонол АФ9-12 разных концентраций.

Научная новизна. Проведено исследование качества неионогенного поверхностно-активного вещества (НПАВ) Неонол АФ9-12. Преимущество НПАВ заключается в его совместимости с водами высокой минерализации и значительно меньшей адсорбции по сравнению с ионогенными ПАВ.

Проведено исследование вытесняющей способности раствора поверхностно-активного вещества (ПАВ) АФ9-12.

1. Общие положения

.1 Развитие методов увеличения нефтеотдачи (МУН) в России

При всех достоинствах освоенного промышленностью метода заводнения нефтяных залежей как метода наиболее полного извлечения нефти он, тем не менее, уже не обеспечивает необходимую конечную степень извлечения нефти из пластов, особенно в условиях неоднородных пористых сред и повышенной вязкости нефти, когда достигается относительно низкий охват пластов заводнением. После окончания разработки нефтяных месторождений в недрах остается от 40 до 80 % запасов нефти. Остаточная нефть в основном находится в таком состоянии, что доизвлечение ее обычными методами разработки затруднительно.

Как известно, различают остаточную нефть двух типов. Первый тип представляет собой не вовлеченную в процесс фильтрации нефть, сосредоточенную в застойных и недренируемых зонах и пропластках, не охваченных воздействием вытесняющих агентов. Причинами возникновения так называемых «целиков» нефти являются в первую очередь проницаемостная неоднородность пласта и низкий охват пласта заводнением и сеткой скважин. Промысловыми исследованиями установлено, что при различии проницаемостей двух пропластков, разделенных глинистой перемычкой, в 5 раз и более, вода практически не поступает в низкопроницаемые пропластки, в результате чего нефть остается не вовлеченной в разработку. Очевидно, что остаточная нефть этого типа по составу практически ничем не отличается от вытесняемой, поскольку она не взаимодействует с закачиваемыми флюидами.

Другой тип остаточной нефти представляет собой нефть, оставшуюся в частично промытых объемах пласта. Согласно характеру изменения фазовых проницаемостей, при высоких значениях водонасыщенности (большой степени выработки коллектора) нефть становится практически неподвижной. Для этого типа нефти большую роль играют взаимодействия в системе порода - нефть и закачиваемые флюиды, в частности, характер смачиваемости поверхности породы. Состав этого типа остаточной нефти отличается от состава нефти в начале разработки.

В работе приводятся кривые вытеснения и диаграммы фазовых проницаемостей для нескольких месторождений Западной Сибири и Урало-Поволжья, сложенных карбонатными породами и песчаниками с различной смачиваемостью. Оказывается, состав и свойства остаточной нефти значительно зависят от характера смачиваемости поверхности пор пород.

При вытеснении нефти из гидрофильной пористой среды реализуется режим вытеснения, близкий к «поршневому», когда до 90 % нефти добывается в безводный период. В свою очередь, водный период для гидрофильных горных пород непродолжителен, и при закачке 0,5-1,5 поровых объемов воды достигается предельная обводненность добываемой продукции. Связанная вода образует пленку по всей поверхности породы, а остаточная нефть преимущественно сосредоточена в крупных порах. Фильтрация воды происходит в первую очередь по мелким и средним капиллярам, нефть из которых выталкивается в виде капель в более крупные капилляры. Остаточная нефтенасыщенность в этом случае представлена капиллярно-защемленной нефтью.

В гидрофобной пористой среде, напротив, вода сосредоточена в центре крупных пор, а нефть образует пленку на поверхности породы. При вытеснении вода формирует непрерывные каналы через крупные и средние капилляры, а толщина нефтяных пленок постепенно уменьшается. Процесс вытеснения для гидрофобных коллекторов характеризуется коротким безводным и продолжительным водным периодом, для достижения предельной обводненности требуется закачка 6-10 поровых объемов воды. Остаточная нефть сосредоточена в пленке на поверхности породы, а также в мелких и тупиковых порах.

Наибольшие коэффициенты вытеснения нефти, превышающие 70 %, достигаются в коллекторах с промежуточной смачиваемостью, когда мелкие поры гидрофильны, а крупные - гидрофобны. В этом случае одновременно происходит вытеснение капель нефти, сосредоточенной в гидрофильных порах, и отмыв пленочной нефти в гидрофобных. Из-за наличия гидрофобных участков образуется значительно меньше капиллярно-защемленной нефти.

Формирование остаточной нефти в промытых зонах определяется также свойствами самой нефти. Компонентный состав, дисперсное строение, содержание тяжелых фракций, наличие полярных асфальтено-смолистых веществ являются факторами, влияющими на структурно-механические свойства капель и пленок нефти и на межфазное натяжение. В частности, содержание и структура асфальтенов и смол имеют принципиальное значение для процесса вытеснения, поскольку именно в этих компонентах сосредоточена большая часть полярных и поверхностно-активных веществ, оказывающих стабилизирующее воздействие на коллоидные системы и усиливающих адсорбцию нефти на поверхности породы.

Специфичность свойств нефтей с повышенным содержанием асфальтенов, смол и парафина, значительные молекулярные массы, наличие гетероэлементов, парамагнетизм, полярность, выраженные коллоидно-дисперсные свойства, возможность образования прочной структуры в нефти и проявления тиксотропных свойств привели к обособлению самостоятельного раздела по гидродинамике процессов разработки неньютоновских нефтей. Среди исследователей, работающих в этой области, можно назвать А.Х. Мирзаджанзаде, В.В. Девликамова, А.Т. Горбунова, И.М. Аметова, З.А. Хабибуллина, А.Г. Ковалева, М.М. Кабирова и др.

Применение заводнения по традиционным технологиям предопределяет закономерное и неизбежное обводнение пластов по мере их выработки. Большинство нефтяных месторождений многопластовые. При этом пласты различаются между собой по коллекторским свойствам, и при совместной их разработке не обеспечивается равномерное вытеснение нефти по всей залежи, что обусловливает формирование остаточной нефти в малопроницаемых прослоях и зонах.

Приведенные факторы существенно влияют на полноту выработки запасов нефти, т.е. на конечный коэффициент нефтеотдачи пластов и на условия рентабельной эксплуатации нефтяных месторождений. Так, среднепроектная нефтеотдача по месторождениям России не превышает 40-43 %.

Другими словами, около 57-60 % начальных запасов нефти останутся не извлеченными. Несмотря на отдельные высокие показатели коэффициентов нефтеотдачи, разработка значительной части нефтяных залежей во всех странах мира с точки зрения полноты выработки запасов нефти характеризуется как неудовлетворительная. Например, в странах Латинской Америки и Юго-Восточной Азии коэффициент конечной нефтеотдачи составляет 24-27 %, в Иране - 16-17 %в США, Канаде, странах Западной Европы, Саудовской Аравии - 33-37 %.

Остаточные запасы (неизвлекаемые) нефти достигают в разных странах в среднем 55-85 % от первоначальных геологических запасов. Еще в более широком диапазоне (30-90 %) изменяются остаточные запасы по отдельным разрабатываемым месторождениям.

Острота проблемы увеличения нефтеотдачи пластов обусловлена тем обстоятельством, что при неуклонном спаде добычи нефти, истощении легко доступных активных запасов, расположенных в благоприятных природно-геологических условиях, в стране практически отсутствуют эффективные технологии по разработке трудноизвлекаемых запасов нефти.

Имеющиеся инженерные решения в этом направлении в основном носят поисковый характер и, как правило, имеют ряд серьезных ограничений.

Доля активных запасов в стране, оцененная рядом авторов, не превышает 50 % от общего объема остаточных запасов нефти. Следовательно, перспектива всей нефтедобывающей отрасли и научных изысканий, в частности, связана с совершенствованием разработки залежей с трудноизвлекаемыми запасами нефти.

Решение проблемы повышения эффективности разработки месторождений с трудноизвлекаемыми запасами связано с созданием новых и усовершенствованием существующих физико-химических методов, обеспечивающих более полное извлечение нефти и уменьшение объемов добычи попутной воды. В связи с этим важное значение приобретают методы регулирования разработки месторождений, вступающих в позднюю стадию, с высокой выработкой запасов и значительной обводненностью добываемой продукции.

В СССР и России начиная с 50-х годов стали настойчиво искать способы повышения эффективности заводнения нефтяных месторождений и увеличения конечной нефтеотдачи пластов.

В начале повышение эффективности заводнения осуществлялось в основном изменением схемы размещения водонагнетательных скважин (законтурное, осевое, блоковое, очаговое, избирательное, площадное и др.). Много внимания уделялось оптимизации давления нагнетания воды, выбору объектов разработки, повышению эффективности заводнения за счет рационального размещения добывающих скважин и др.

Результаты применения повышенных давлений на линии нагнетания, близких к горным, показали, что с увеличением перепада давления между пластом и скважиной происходит увеличение работающей толщины и коэффициента гидропроводности пласта. Среднее увеличение работающей толщины пласта при росте давления с 11 до 15 МПа составляет около 20 %.

В начале 60-х годов стали усиленно изучать методы улучшения нефтевытесняющей способности воды за счет добавки различных активных агентов. В качестве таких агентов стали исследовать и применять углеводородный газ, полимеры, поверхностно-активные вещества, щелочи, кислоты и др. Эти методы были направлены на устранение или уменьшение отрицательного влияния капиллярных сил и сил адгезии, удерживающих нефть в заводненных объемах пластов.

К этим способам относятся применение слабоконцентрированных растворов водорастворимых ПАВ, щелочей и полимеров, циклическое воздействие на пласт, изменение направления потоков жидкостей и другие, увеличивающие нефтеотдачу на 2-8 %. К наиболее высокопотенциальным относятся методы вытеснения высоковязкой нефти паром, внутрипластовым горением и маловязкой нефти мицеллярными растворами, увеличивающими нефтеотдачу на 15-20 %. Эффективность метода вытеснения нефти углекислым и углеводородным газами, совмещенного с заводнением, занимает промежуточное положение (5-15%).

С ростом обводненности добываемой жидкости эффективность приведенных выше МУН снижается и при высокой обводненности они становятся малоэффективными. Поэтому масштабы их применения к 1992- 1993 гг. сократились.

Неоднородность продуктивных пластов по проницаемости, как было показано в предыдущих разделах, обусловливает то, что закачиваемая для ППД вода проходит по наиболее проницаемым пропласткам и слоям, оставляя не выработанными менее проницаемые прослои. Разработка продуктивных пластов системой скважин в условиях неоднородных пластов ведет к образованию застойных зон между скважинами (в том числе и в высокопродуктивных пластах), обусловливаемому гидродинамикой процессов вытеснения и распределением поля давлений в системе скважин. В таких измененных геолого-промысловых условиях разработки продуктивных пластов основным условием повышения эффективности их эксплуатации становится значительное снижение проницаемости обводненных наиболее проницаемых прослоев пласта с тем, чтобы направить закачиваемую воду в менее проницаемые малообводненные прослои, а также изменить распределение поля давлений с целью охвата заводнением застойных зон. В связи с этим были начаты и получили развитие лабораторные и промысловые исследования, направленные на разработку методов увеличения коэффициента охвата пластов воздействием закачиваемой водой.

Одной из первых технологий увеличения коэффициента охвата пласта воздействием на поздней стадии разработки явилась закачка в высокообводненные послойно-неоднородные пласты полимердисперсных систем (ПДС), когда последовательно закачивали слабоконцентрированные растворы полимера и глинистой суспензии. В дальнейшем появилось большое количество технологий на основе использования полимеров, щелочей и ПАВ, основанных на осадко-гелеобразовании в высокообводненных пластах. Одним из ранних методов было применение полиакриламида со сшивателем (ацетат хрома) и простых эфиров целлюлозы. Закачка растворов этих реагентов и систем сравнительно больших объемов (200-500 м3 на 1 м толщины пласта) позволяет снизить проницаемость высокопродуктивных хорошо промытых прослоев пласта на достаточно большом расстоянии от нагнетательной скважины. Используя идею снижения проницаемости наиболее высокопроницаемых и хорошо промытых зон пласта путем создания в пористой среде неподвижных гелей и кольматирования осадкообразующими системами, начали прменять более доступные и менее дорогостоящие реагенты и их композиции (жидкий нефелин, алюмохлорид, щелочные стоки производства капролактана, древесную муку, отработанную щелочь, различные вторичные материальные ресурсы (BMP) и др.). Вслед за гелеосадкообразующими системами начали закачивать реагенты и их композиции, улучшающие нефтевытесняющие свойства воды. Все эти методы можно рассматривать как модификации способов, основанных на использовании осадкогелеобразующих и полимердисперсных систем.

Наряду с закачкой больших объемов растворов химреагентов в последние годы начали закачивать сравнительно небольшие объемы химических реагентов, которые ведут к так называемому направленному изменению свойств призабойной зоны пласта. Одним из таких методов является применение вязкоупругих составов, представляющих собой растворы полиакриламида с повышенным содержанием сшивателя и других химических продуктов.

При разработке монолитных пластов с резкой неоднородностью по проницаемости или при наличии в разрезе двух или более пластов (пропластков) получают применение биополимеры, гипан + жидкое стекло, управляемая гелевая система (жидкое стекло + соляная кислота), резиновая крошка, кремнийорганический продукт и другие.

В терригенных коллекторах, представленных большим количеством малопроницаемых пластов со значительным содержанием глинистых материалов, нефть вырабатывается слабо. Для их активного вовлечения в эксплуатацию разработаны различные методы: декольматация, разглинизация, воздействие на призабойную зону пласта различными волновыми и другими физическими методами в сочетании с применением химических реагентов, например, акустико-химическое воздействие (АХВ), комплексное химико-депрессионное воздействие (КХДВ). Все большее применение находят физические методы: термобароимплозионное воздействие (ТБИВ), депрессионная перфорация (ДП), сейсмоакустическое воздействие. Эти методы применяются в нагнетательных скважинах для увеличения приемистости и выравнивания профиля приемистости, а также увеличения дебитов добывающих скважин.

В последние годы получают развитие методы увеличения нефтеотдачи с применением микроорганизмов. Их перспектива связана, в первую очередь, с простотой реализации, минимальной капиталоемкостью и экологической безопасностью.

Биотехнологические процессы в области увеличения нефтеотдачи пластов можно использовать в двух главных направлениях. Во-первых, это производство на поверхности реагентов для закачки в пласты по известным технологиям. К этому классу веществ относятся биополимеры, диоксид углерода, некоторые ПАВ, растворители, эмульгаторы и т.д. И, во-вторых, использование для улучшения условий нефтевытеснения продуктов микробиологической жизнедеятельности, получаемых непосредственно в нефтеводогазосодержащих пластах.

В последние годы, благодаря созданию мощных источников вибрации и теоретической разработке основ процессов локализации и накопления энергии в заданных точках, стало возможным приступить к созданию технологий увеличения нефтеотдачи пластов, особенно истощенных в процессе разработки традиционными методами. Механизм воздействия механических волн на пластовые системы и технические средства для его реализации изучаются отечественными и зарубежными авторами.

Предварительные результаты промысловых исследований показывают, что имеющиеся технические средства позволяют осуществлять воздействие целенаправленно на определенные участки пласта, охватывая весь его объем от призабойных зон скважин до наиболее удаленных участков нефтяной залежи. Это возможно при одновременном использовании нескольких поверхностных и скважинных источников вибрации. Существуют источники, основанные на различных принципах создания вибрации и передачи ее земной толще. Группирование наземных и скважинных генераторов вибрации позволяет фокусировать колебания и за счет интерференции осуществлять мощное воздействие в той или иной точке пласта. При этом недостатки тех или других генераторов как бы устраняются, а преимущества используются более полно, о чем свидетельствует мировой опыт.

Как видно из приведенного краткого обзора, за последние годы исследователями в содружестве с промысловыми инженерами выполнены значительные работы по созданию новых технологий увеличения нефтеотдачи пластов, достаточно эффективные в условиях высокой обводненности нефтяных залежей.

Анализ результатов промысловых испытаний новых способов увеличения нефтеотдачи заводненных пластов показывает, что для залежей, находящихся на поздней стадии разработки, наиболее перспективными являются физико-химические, гидродинамические, волновые и микробиологические методы воздействия на пласт. Применение указанных методов воздействия на обводненные пласты может привести к повышению коэффициента вытеснения нефти из пористой среды или к увеличению коэффициента охвата воздействием закачиваемой водой, или одновременному увеличению как коэффициента вытеснения, так и охвата воздействием.

Таким образом, МУН пластов на поздней стадии заводнения залежей можно разделить на три группы:

методы, направленные на увеличение коэффициента вытеснения нефти из пористой среды путем улучшения нефтеотмывающих свойств закачиваемой воды;

методы, направленные на повышение охвата залежи воздействием воды;

методы комплексного воздействия на залежь, позволяющие одновременно увеличить как коэффициент вытеснения нефти, так и охват пласта воздействием.

Методы увеличения коэффициента вытеснения нефти с использованием различных химических продуктов применяются на начальных стадиях разработки месторождений. Основное внимание уделяется увеличению коэффициента вытеснения с применением ПАВ, щелочей, кислот и растворителей. В данном направлении достигнуты определенные успехи.

При использовании второй группы методов, основанных на повышении фильтрационного сопротивления обводненных зон нефтеводонасыщенного коллектора, применяют полимеры, полимеры со сшивателями, полимердисперсные системы (ПДС), коллоидно-дисперсионные системы (КДС), волокнисто-дисперсные системы (ВДС) и другие осадко-гелеобразующие композиции. Эти методы наиболее широко начали применяться на поздней стадии разработки месторождений, что связано со снижением эффективности гидродинамических и ряда физико-химических методов на основе ПАВ, кислот и щелочей.

Комплексное воздействие на нефтеводонасыщенный коллектор достигается при использовании следующих технологий:

закачка алкилированной серной кислоты (АСК);

щелочно-силикатное и щелочно-полимерное заводнение, применение тринатрийфосфата;

комбинированные технологии, основанные на закачке ПДС с поверхностно-активными веществами и щелочами, ПДС - СТА (стабилизированный тощий абсорбент) и др.;

методы, основанные на совместной закачке полимеров, ПАВ, кислот, щелочей и растворителей;

совместное использование физических методов (акустическое воздействие, вибровоздействие) и нефтевытесняющих агентов;

гидродинамические МУН.

Исходя из этих соображений А.А. Газизов в соавторстве с А.Ш. Газизовым и С.Р. Смирновым предложили классификацию МУН, перспективных для применения в условиях высокой обводненности нефтяных залежей по механизму воздействия на залежь и остаточную нефть.

Классификация физических и физико-химических МУН, применяемых при высокой обводненности нефтяных залежей:

применение водорастворимых ПАВ;

применение нефтерастворимых ПАВ;

совместное применение водорастворимых и нефтерастворимых ПАВ;

мицеллярные растворы;

композиции углеводородов и ПАВ;

щелочное заводнение.

Увеличение коэффициента охвата воздействием:

применение полимеров и биополимеров;

применение полимеров со сшивателями;

вязкоупругие системы (ВУС);

полимердисперсные, волокнисто-дисперсные и коллоидно-дисперсные системы (ПДС, ВДС, КДС и др.);

гелеобразующие системы на основе кремнеорганических соединений, жидкого стекла, алюмохлорида, алюмосиликатов и др.

Методы комплексного воздействия:

гидродинамические МУН;

полимеры с щелочами;

ПДС с ПАВ и ЩСПК;

силикатно-щелочное воздействие;

волновое воздействие;

микробиологические МУН.

1.2 Краткие сведения о ПАВ

Под ПАВ понимают химические соединения, способные вследствие положительной адсорбции изменять фазовые и энергетические взаимодействия на различных поверхностях раздела жидкость - воздух, жидкость - твердое тело, нефть - вода. Поверхностная активность, которую в определенных условиях могут проявлять многие органические соединения, обусловлена как химическим строением, в частности, дифильностью (полярностью и поляризуемостью) их молекул, так и внешними условиями: характером среды и контактирующих фаз, концентрацией ПАВ, температурой.

Поверхностно-активные вещества - вещества с асимметричной молекулярной структурой, молекулы которых содержат один или несколько гидрофобных радикалов и одну или несколько гидрофильных групп. Такая структура обуславливает поверхностную активность молекул поверхностно-активных веществ, т.е. способность концентрироваться на межфазных поверхностях раздела, тем самым изменяя свойства системы.

Гидрофильной частью служит карбоксильная (COO-), сульфатная (- OSO3-) и сульфонатная (- SO3-) группы, а также группы -СН2-СН2-О-СН2СН2 - или группы, содержащие азот. Гидрофобная часть состоит преимущественно из парафиновой цепи, прямой или разветвленной, из бензольного или нафталинового кольца с алкильными радикалами. Так как адсорбционная способность органических веществ растет с длиной углеводородных цепей, то к типичным, особенно эффективным ПАВ относятся более высокие члены гомологических рядов, содержащие 10-18 атомов углерода в молекулах.

Термины гидрофильный и гидрофобный характеризуют взаимодействие между поверхностно-активным веществом и водой. Но в настоящее время, когда, кроме водной среды, поверхностно-активные вещества применяются и в других средах, термины гидрофильный и гидрофобный, отражающие взаимодействие вещества только с водой, являются недостаточными. На IV Международном конгрессе по поверхностно-активным веществам были предложены обобщающие термины: эндофильный и экзофильный.

Эндофильность соответствует случаю, когда взаимодействие всей или части молекулы вещества с молекулами рассматриваемой фазы более сильное, чем взаимодействие между молекулами (или частью их) вещества. В противоположном случае имеет место экзофильность.

Обычно ПАВ представляют собой органические вещества, содержащие в молекуле углеводородный радикал и одну или несколько полярных групп.

Согласно ионной классификации Шварца и Перри, принятой в 1960 г. на III Международном конгрессе по ПАВ в Кельне, все ПАВ по химической природе делят на неионогенные, т. е. не диссоциирующие на ионы (НПАВ) в водных растворах, и ионогенные, которые в воде распадаются на ионы, как обычные электролиты. Ионогенные ПАВ, в свою очередь, подразделяют на анионактивные (АПАВ), катионактивные (КПАВ), амфотерные и цвиттер-ионные.

Ионогенные ПАВ в водном растворе диссоциируют: анионные - с образованием отрицательно заряженных поверхностно-активных ионов; катионные - с образованием положительно заряженных поверхностно-активных ионов; амфолитные - с образованием соединений, которые в зависимости от характера среды обладают анионо- или катионоактивным характером. Неионные ПАВ в водном растворе не образуют ионов. Их растворимость обусловлена функциональными группами, имеющими сильное сродство к воде.

В отдельную группу выделяются высокомолекулярные (полимерные) ПАВ, состоящие из большого числа повторяющихся звеньев, каждое из которых имеет полярные и неполярные группы.

По растворимости в воде и маслах ПАВ подразделяют на три группы: водо-, водомасло- и маслорастворимые.

Водорастворимые ПАВ состоят из гидрофобных углеводородных радикалов и гидрофильных полярных групп, обеспечивающих растворимость всего соединения в воде. Характерная особенность этих ПАВ - их поверхностная активность на границе раздела вода - воздух.

Водомаслорастворимые ПАВ применяют в основном в системах нефть - вода. Гидрофильные группы в молекулах таких веществ обеспечивают их растворимость в воде, а достаточно длинные углеводородные радикалы - растворимость в углеводородах.

Маслорастворимые ПАВ не растворяются и не диссоциируют (или слабо диссоциируют) в водных растворах. Помимо разветвленной углеводородной части значительной молекулярной массы, обеспечивающей растворимость в углеводородах, маслорастворимые ПАВ часто содержат гидрофобные активные группы. Как правило, эти ПАВ слабо поверхностно-активны на границе раздела жидкость - воздух.

Вопрос о применении ПАВ для увеличения нефтеотдачи также решался неоднозначно на разных этапах развития внедрения МУН. После 80-х годов XX века, когда была подвергнута научному сомнению состоятельность заводнения с неионогенными ПАВ (НПАВ), потребовалось еще почти два десятилетия для того, чтобы доказать, что применение ПАВ не только один из наиболее эффективных методов повышения нефтеотдачи, но и то, что заводнение с НПАВ дает максимальный эффект, если внедряется с начала разработки. Этот вывод подтвержден результатами промысловых испытаний на опытных участках некоторых площадей Ромашкинского нефтяного месторождения.

Сегодня уже нет никаких сомнений в том, что применение ПАВ в различных технологиях повышения нефтеотдачи пластов является наиболее предпочтительным с точки зрения сохранения коллекторских свойств продуктивных пластов, влияния на процесс подготовки и транспортирования нефти. Это определяется многоплановым механизмом действия ПАВ:

Добавка ПАВ в воду снижает межфазное натяжение воды на границе с нефтью. При низком межфазном натяжении капли нефти легко деформируются и фильтруются через сужения пор, что увеличивает скорость их перемещения, в пласте. К тому же при концентрации ПАВ выше ККМ (критической концентрации мицеллообразования) низкое значение межфазного натяжения на границе «раствор - нефть» будет способствовать солюбилизации нефтяных компонентов в растворе ПАВ.

Добавка ПАВ в воду за счет снижения поверхностного натяжения уменьшает краевые углы смачивания, т.е. увеличивает смачиваемость породы водой. Гидрофилизация в совокупности со снижением межфазного натяжения приводит к сильному ослаблению адгезионных взаимодействий нефти с поверхностью породы.

Водные растворы ПАВ проявляют моющее действие по отношению к нефти, покрывающей поверхность породы тонкой пленкой, способствуя разрыву пленки нефти. Адсорбируясь на поверхности раздела нефти с водой и вытесняя активные компоненты нефти, создающие на поверхности раздела адсорбционные слои с высокой прочностью, ПАВ облегчают деформацию менисков в порах - капиллярах пласта. Все это, увеличивает глубину и скорость капиллярного впитывания воды в нефтенасыщенную породу. Под действием ПАВ интенсивнее происходит диспергирование нефти в воде, причем ПАВ стабилизируют образующуюся дисперсию. Размеры нефтяных капель уменьшаются. Вероятность их коалесценции и прилипания к твердой поверхности снижается. Это ведет к значительному повышению относительной фазовой проницаемости пористой среды для нефти и воды.

Лучшее вытеснение нефти водой, содержащей ПАВ, связано также с сильным влиянием ПАВ на реологические свойства нефти. Введение ПАВ в нефть приводит к изолированию микрокристаллов парафинов и разрушению пространственной структуры, образуемой ими, а также к внедрению ПАВ в ассоциаты асфальто-смолистых веществ, следствием чего является снижение степени агрегирования АСВ (асфальто-смолистых веществ) в растворе низкомолекулярных углеводородов и уменьшение вязкости нефти.

Начало применения ПАВ в нефтепромысловой практике относится к 50-ым годом XX века.

За прошедшие 50 лет сложился широкий спектр ПАВ, применяемых для увеличения нефтеотдачи: сульфонолы; сульфоэтоксилаты ОЭАФ , алкилсульфоиаты, реагенты ряда ОП (ОП-4, ОП-10) оксиэтилированные алкилфенолы (неонолы АФ9-4, АФ9-6, АФ9-10, АФ9-12) и др. Причем первоначально указанные ПАВ использовались индивидуально, а теперь преобладает применение композиций ПАВ, обладающих синергическим эффектом совместного действия АПАВ и НПАВ, таких как композиция «Сепавет» фирмы ВА8Р , маслорастворимые и водорастворимые ПАВ «Нефтенол», технология «СНО АН МФК». Также известны технология на основе композиции Нефтенола НЗ «ЗАО Химеко-ГАНГ», композиция СНПХ-95 ОАО «НИИНефтепромхнм» и т.п. Технологии данного типа осуществляются путем использования составов, содержащих разные классы ПАВ, которые при введении в воду позволяют снизить межфазное натяжение на границе, обладают высокой солюбилизирующей способностью, образуют на границе с углеводородом микроэмульсионную фазу и не дают устойчивых, плохо разрушающихся эмульсий.

Первые попытки применения эмульсий в нефтяной промышленности были предприняты в начале 70-х годов, но из-за дороговизны реагентов и ограниченного ассортимента ПАВ эмульсионные системы нашли ограниченное применение . Известно множество составов эмульсионных систем, однако в основном они отличаются только классом и концентрацией поверхностно-активных веществ (ПАВ). Использовавшиеся ранее ПАВ-стабилизаторы эмульсий были представлены ионогенным классом, применение которого ограничивалось минерализацией воды, используемой для приготовления растворов, а также минерализацией пластовой воды. К ПАВ этого класса можно отнести нефтяные сульфонаты. Для устранения отрицательного влияния минерализации воды на устойчивость эмульсионных составов в качестве эмульгаторов и стабилизаторов эмульсий было предложено использование неионогеиных ПАВ, оксиэтилнрованных продуктов, таких как оксиэтшшрованные алкилфенолы (неонолы), окспэтилированиые высшие спирты и др.

Примером такой композиции является разработка фирмы «Хёхст» -«Додифлад V-3100». В эмульсионных составах в качестве углеводородной дисперсионной среды, как правило, используются легкие (гексановая. дизельная) фракции нефти. Вместе с тем, содержание водной фазы в этих системах было незначительным, поэтому вязкость полученных эмульсионных систем также была ограниченна.

Разработанные технологии эмульсионного воздействия, как правило, рекомендцются для применения - в песчанистых пластах, где обычное заводнение было успешным, но уже исчерпало себя; или на карбонатных залежах при использовании в качестве эмульгаторов ПАВ неионогенного класса. Однако все разработанные составы имеют ряд ограничений по плотности и вязкости нефти (малая и средняя), по проницаемости коллектора (средняя и высокая) и по достаточно высокой остаточной нефтенасыщенности (не менее 25-30 %). Были проведены единичные испытания эмульсионного метода на коллекторах, представленных тяжелыми нефтями, где также наблюдается прирост нефтеизвлечения, хотя для этого необходим больший перепад давления при закачке.

Наиболее широкое применение в технологии повышения нефтеотдачи нашли неионогенные поверхностно-активные вещества (НПАВ).

Этот вид ПАВ насчитывает более 50 веществ различных групп. Среди них наибольшее распространение получили оксиэтилированные изононилфенолы типов ОП-10, АФ9-4, АФ9-6, АФ9-10, АФ9-12, в основном из-за больших объемов их промышленного производства.

По мнению многих исследователей, преимущество НПАВ заключается в их совместимости с водами высокой минерализации и значительно меньшей адсорбции по сравнению с ионогенными ПАВ. Однако многолетний опыт применения индивидуальных ПАВ типа ОП-10 для увеличения нефтеотдачи не дал однозначных результатов и др. Об эффективности применения НПАВ, как метода увеличения нефтеотдачи, существуют различные мнения, как положительные, так и отрицательные.

С позиций сегодняшнего дня это можно объяснить слабой поверхностной активностью на границе раздела нефть - вода, незначительными нефтеотмывающими свойствами, большими потерями в пласте, неопределенностями в оценке технологической эффективности метода по промысловым данным. Кроме того, метод далек от универсальности. Он может эффективно использоваться в строго определенных геолого-физических условиях, о чем свидетельствует многолетний опыт (с 1971 г.) применения ПАВ в Татарстане для повышения нефтеотдачи пластов залежей терригенного девона. По объемам внедрения метод заводнения с применением ПАВ в объединении Татнефть занимает второе место после закачки серной кислоты. На месторождениях Татарстана закачано около 60 тыс. т водорастворимых и около 20 тыс. т маслорастворимых ПАВ. Только на Ромашкинском месторождении за счет закачки ПАВ добыто более 3 млн. т нефти, или 47,5 т на 1 т ПАВ.

Многочисленные экспериментальные исследования, выполненные в ТатНИПИнефти, показали, что применение концентрированных растворов ПАВ в условиях первичного вытеснения нефти из моделей терригенных пород существенно улучшает процесс вытеснения нефти. Максимальный прирост коэффициента вытеснения по сравнению с водой составил 2,2-2,7 % . Несколько большее значение прироста коэффициента вытеснения, равное 3,5-4 %, было получено при использовании моделей малопроницаемых пористых сред.

В экспериментах по вытеснению остаточной нефти из моделей терригенных пород с использованием дисперсий маслорастворимых ПАВ, выполненных в УНИ и ВНИПИнефтепромхим, была показана возможность существенного улучшения доотмыва остаточной нефти после обычного заводнения. Промысловые испытания этой технологии на опытном участке Ташлиярской площади Ромашкинского месторождения позволили дополнительно получить 24 тыс. т нефти, или 60 т на 1 т ПАВ. По этой технологии для довытеснения остаточной нефти была закачана водная дисперсия маслорастворимого ПАВ АФ9-6. Приготовленная на поверхности водная дисперсия с концентрацией до 10 % представляла собой микроэмульсию прямого типа. Средняя обводненность добываемой жидкости из скважин опытных участков составляла 83-95 %. В других геолого-физических условиях, например Башкирии, промысловый эксперимент, проводимый на Арланском месторождении с 1967 г. по технологии долговременного дозирования низкоконцентрированных растворов ОП-10, не дал ожидаемых положительных результатов. Несмотря на то, что в пласты опытного объекта было закачано более одного порового объема 0,05 % раствора ОП-10, систематический контроль за содержанием ПАВ в продукции добывающих скважин не выявил заметных концентраций ПАВ. Значительные потери активного вещества в пласте многие авторы связывают с адсорбционными и деструкционными процессами, происходящими после закачки ПАВ в пласт.

1.3 Современные представления о механизме вытеснения нефти из пористой среды с применением ПАВ

В процессе вытеснения нефти поверхностно-активные вещества оказывают влияние на следующие взаимосвязанные факторы: межфазное натяжение на границе нефть - вода и поверхностное натяжение на границах вода - порода и нефть - порода, обусловленное их адсорбцией на этих поверхностях раздела фаз. Кроме того, действие поверхностно-активных веществ проявляется в изменении избирательного смачивания поверхности породы водой и нефтью, разрыве и отмывании с поверхности пород пленки нефти, стабилизации дисперсии нефти в воде, приросте коэффициентов вытеснения нефти водной фазой при принудительном вытеснении и при капиллярной пропитке, в повышении относительных фазовых проницаемостей пористых сред.

Пленочная нефть может покрывать гидрофобную часть поверхности пор пласта в виде тонкого слоя, либо в виде прилипших капель, удерживаемых силами адгезии Wa. Работа силы адгезии, необходимая для удаления пленочной нефти с единицы поверхности пор в водную фазу, заполняющую поры, определяется уравнением Дюпре

нефтеотдача терригенный порода неонол

Wa = σ + σвп - σнп,

где σ, σвп, σнп - свободная поверхностная энергия границ раздела фаз нефть - вода, вода - порода и нефть - порода соответственно.

Добавка к воде поверхностно-активных веществ приводит к изменению соотношения значений свободной поверхностной энергии благодаря адсорбционным процессам ПАВ на межфазных границах раздела. При этом межфазное натяжение, как правило, уменьшается.

Адсорбция ПАВ на гидрофобных участках поверхности пор, которые могут существовать в результате хемосорбции некоторых компонентов нефти, приводит к снижению ОВП и увеличению АНП в соответствии с правилом ориентации дифильных молекул. Данные обстоятельства и способствуют отделению нефти от поверхности.

На гидрофильных участках поверхности пор адсорбция ПАВ наоборот приводит к увеличению ОВП и снижению АНП, т. е. к непроизводительным потерям ПАВ, и способствует прилипанию капель нефти к этим участкам.

Таким образом, для гидрофобных поверхностей ПАВ должны проявлять высокую поверхностную активность на границе раздела сред нефть - вода и вода - порода и ограничивать адсорбцию на гидрофильных участках поверхности пород.

Капиллярно-удерживаемая нефть в обводненных пластах заполняет пространство в виде капель или участков, разделенных пространством, заполненным водой.

На границах раздела существуют мениски, создающие капиллярное давление

где n - число менисков; - эффективные радиусы кривизны менисков;

«+» - означает противоположное направление давления выпуклых и вогнутых менисков по отношению к потоку.

В неподвижном состоянии противоположно направленные давления менисков компенсируются. В вытесняющем потоке под действием перепада внешнего давления мениски деформируются по закону упругости так, что возникает составляющая капиллярного давления, направленная противоположно потоку, наблюдается эффект Жамена

pI = Σ2σ (1/Ri - 1/ Rj),

где Ri, Rj - эффективные радиусы кривизны выпуклых и вогнутых (к потоку) менисков соответственно.

Основной механизм в процессах добычи нефти с применением ПАВ заключается в снижении поверхностного натяжения на границе раздела вытесняющей и вытесняемой жидкостей до очень низких значений, при которых капиллярно-удерживаемая нефть становится подвижной.

Габер, Мелроуз, Бардон и Лонжерон исследовали влияние, так называемого безразмерного капиллярного числа, на снижение остаточной нефтенасыщенности. Капиллярное число выражалось уравнением


где µв - динамическая вязкость воды;

ν - линейная скорость фильтрации; - пористость; - свободная поверхностная энергия границ раздела вода - нефть.

Экспериментально показано, что для достижения значительного снижения остаточной нефтенасыщенности капиллярное число должно быть не менее 10-3. Для сравнения заметим, что при обычном заводнении указанный параметр имеет значение 10-6. Следовательно, значение поверхностного натяжения должно быть снижено в 1000 раз, чтобы увеличить значения капиллярного числа до 10-3.

В работах отмечено, что состояние глобул нефти в поровом пространстве определяет критическое значение фильтрационных параметров, равное Δр r / 2σ, здесь Δр - перепад давлений; r - радиус канала фильтрации; σ - поверхностное натяжение. При значениях Δр r / 2σ ниже критических глобул нефть сохраняет равновесный размер и не может быть вытеснена из поры. Для эффективного вытеснения нефти необходимо превышение критического значения градиента давления или уменьшение поверхностного натяжения. Анализ уравнения Лапласа для глобулы нефти, содержащейся в единой поре, показал, что падение давления вдоль поры напрямую зависит от геометрии поры, поверхностного натяжения и фильности породы.

Для вытеснения нефти из гидрофобного коллектора требуется достижение либо большего перепада давления, чем для гидрофильного, либо большего снижения поверхностного натяжения. В зависимости от природы нефтенасыщенного порового пространства требуется достижение различных значений межфазного натяжения. В работе приведены результаты расчетов, выполненные В. В. Суриной. Так, для гидрофобного карбонатного коллектора межфазное натяжение равно 0,002 мН/м, для гидрофильного - 0,974 мН/м, а для терригенного гидрофильного коллектора - 0,0825 мН/м.

Итак, достижение заметного увеличения коэффициента вытеснения нефти за счет снижения межфазного натяжения с применением доступных промышленных ПАВ возможно в гидрофильных карбонатных коллекторах.

Смачивающую способность ПАВ общепринято оценивать значением краевого угла избирательного смачивания. Однако более строгим критерием смачивающей способности ПАВ является энергия взаимодействия нефти с поверхностью породы, определяемая как работа адгезии нефти

W= σ (l - cos θ),(1.5)

где σ - межфазное натяжение на границе раздела нефть - водная фаза;

θ - краевой угол избирательного смачивания.

Чем меньше краевой угол избирательной смачиваемости, тем выше работа адгезии нефти и, следовательно, лучше смачивающая способность ПАВ.

Изменение смачиваемости зависит от химического состава породы, первоначального состояния поверхности и от массового соотношения гидрофильно-липофильного баланса. По характеристике смачиваемости карбонатные породы более гидрофобны, чем терригенные, что связано с ионным типом связей в кристаллической решетке, способствующих активному взаимодействию полярных компонентов нефти с породой и ее гидрофобизации. При этом углы смачивания данных пород достигают 140-150°. Изменение смачиваемости твердой поверхности с гидрофобной на гидрофильную для карбонатных пород способствует улучшению отрыва пленок и капель нефти, увеличению их подвижности, активизации капиллярного впитывания.

При вытеснении нефти растворами ПАВ последние могут диффундировать в значительных количествах в нефть. ПАВ адсорбируются асфальтенами нефти. Дисперсность асфальтенов меняется, в результате изменяются реологические свойства нефти. Контактируя в пористой среде с нефтью, ПАВ способны переходить в нефть и существенно изменять ее свойства. Впервые в работах В.В. Девликамова и его учеников сообщалось о диффузии в нефть ПАВ из водных растворов. Диффузию ионогенных ПАВ заметить не удалось.

Экспериментально В.В. Девликамовым и его учениками изучалась диффузия ПАВ ОП-10 из водных растворов в нефть, содержащую 4 % асфальтенов и 14 % силикогелевых смол. Установлено, что в статических условиях, при длительном контакте одних и тех же навесок ПАВ и нефти, коэффициент распределения ПАВ превысил 2 через 100 ч. В динамических условиях (т.е. раствор ПАВ заменялся через 24 ч) за 500 ч содержание ПАВ в нефти в 3 раза превысило его концентрацию в водном растворе.

Хорошо известно, что в состав нефти входят углеводороды - парафины и различные комплексные соединения, такие как смолы, асфальтены, оказывающие сильное влияние на вязкость нефти. Более того, нефть, содержащая значительное количество асфальтенов, имеет непостоянную вязкость. При большом количестве парафинов в нефти ее вязкость тоже оказывается переменной, зависящей от скорости сдвига. Эти особенности реологических свойств нефти обусловлены коллоидным состоянием диспергированных в ней парафинов или асфальтенов. Течение таких жидкостей не подчиняется закону Ньютона и их принято называть аномальными.

Теми же авторами в работе изучалось влияние ПАВ на аномалии вязкости нефтей. Ими было определено влияние на реологические параметры нефти нефтерастворимых ПАВ типов ОП-4, «Серапол-29», «Стеарокс-4», Неонол. Установлено, что аномалии вязкости нефти уменьшают нефтеотдачу пластов, способствуют образованию застойных зон и зон малоподвижной нефти, где фактические градиенты пластового давления оказываются меньшими или сравнимыми с градиентами динамического давления сдвига.

Из рассмотренного следует, что при вытеснении нефти водными растворами НПАВ часть активного вещества переходит в нефть. В результате этого происходит подавление аномалий вязкости нефти, приводящее к увеличению коэффициента вытеснения нефти из пористой среды.

1.4 Исследования по оценке потерь, разрушения и распределения ПАВ при вытеснении нефти из терригенных и карбонатных пород

Одной из важнейших причин низкой эффективности применения ПАВ являются большие потери активного реагента в призабойной зоне пласта.

Исходя из современных представлений о процессах, происходящих в пласте при закачке растворов ПАВ, потери ПАВ связаны со следующими явлениями:

осаждение в результате взаимодействия с поливалентными ионами пластовой воды, входящими в состав глин и других минералов;

переход в неподвижную нефть;

адсорбция на породе;

химическое, биологическое и механическое разрушения (деструкция).

Если проявления первых двух факторов можно устранить простым подбором компонентов композиции, то на процессы адсорбции оказывать влияние значительно сложнее. Для снижения адсорбции требуются особые технологические приемы.

Адсорбция зависит от следующих факторов, характеризующих пластовую систему и состав закачиваемой рабочей композиции: химический состав породы-коллектора; средняя молекулярная масса ПАВ; рН пластовой воды и содержание двухвалентных ионов (кальций, магний); тип и химический состав ПАВ, состав пластовой нефти.

Для снижения адсорбции ПАВ в пласте могут быть использованы следующие технологические приемы:

правильный подбор средней молекулярной массы ПАВ;

изменение рН рабочей композиции с ПАВ;

предварительное подавление центров адсорбции на породе за счет закачки «жертвенных» реагентов.

Далее следует уточнить понятие адсорбции ПАВ в пласте. Под адсорбцией понимают процесс перехода растворенного вещества из объемной фазы в поверхностный слой, связанный с изменением поверхностной энергии слоя. Значение адсорбции определяет избыток массы (молекул) адсорбированного вещества на единицу поверхности слоя по сравнению с объемом . Слой, образованный на поверхности раздела раствора ПАВ с другой средой - воздухом, жидкостью или твердым телом, состоящий из адсорбированных молекул ПАВ и характеризующийся повышенной концентрацией по сравнению с их концентрацией в объемах обеих фаз, называется адсорбционным.

Вопросы адсорбции ПАВ весьма широко освещены во многих работах . Изучение процессов адсорбции ПАВ в разное время проводили многие видные ученые: из отечественных - П.А. Ребиндер, И.И. Кравченко, Г.А. Бабалян, А.Н. Фрумкин, Б.В. Ильин, П.Д. Шилов, из зарубежных - Нернст, Гаруа, Лангмюр и др. Адсорбционные явления представляют собой сложную совокупность физических, химических и физико-химических процессов. Природу адсорбции пытались описать многими теориями. Наиболее известны следующие: теория с позиций электрохимии, основанная на адсорбции полярных молекул, теория капиллярной конденсации; теория Юре - Гаркинса; теория молекулярной адсорбции Ленгмюра и др.

Известно, что на поверхности раздела между жидкостью и газом или несмешивающимися жидкостями происходит адсорбция благодаря тому, что ПАВ состоит из водо- и нефтерастворимой групп. Так как гидрофильная группа характеризуется большей растворимостью в воде, чем гидрофобная, молекулы ПАВ ориентируются на поверхности воздух - вода на нефтерастворимую группу в воздухе и водорастворимую в воде. В зависимости от эффективности ПАВ межфазовая поверхность превращается в контакт воздух - вода и нефть. При этом уменьшаются силы молекулярного притяжения и в итоге поверхностное натяжение.

Способность ПАВ к адсорбции на границе раздела между жидкостью и твердым веществом влияет существенным образом на смачиваемость породы. Этому факту можно дать следующее, достаточно широко распространенное объяснение. При воздействии катионных ПАВ положительная растворимая группа адсорбируется отрицательными частицами силикатов, при этом нефтерастворимой группе обеспечивается смачивание. При использовании анионных ПАВ отрицательно заряженная водорастворимая группа отталкивается отрицательно заряженными частицами силиката, в этом случае ПАВ незначительно адсорбируется на силикате (песок, глина).

Для карбонатных пород картина совершенно иная. Известняк характеризуется положительным зарядом поверхности при рН от 0 до 8 и отрицательным при рН > 9,5. Поэтому в основном известняки и доломиты имеют положительный поверхностный заряд. В случае применения анионоактивных ПАВ, имеющих отрицательный поверхностный заряд, водорастворимая группа должна адсорбироваться положительно заряженными карбонатными частицами. В результате нефтерастворимая группа оказывает влияние на смачиваемость.

Представляют интерес исследования, выполненные Т.Н. Максимовой с целью определения зависимости адсорбции НПАВ от длины пористой среды. Опыты проводились на насыпных водонасыщенных пористых средах с диаметром 1 см и длиной 1 и 3 м. В первой серии экспериментов использовался молотый кварцевый песок и ПАВ ОП-10, во второй - экстрагированный дезинтегрированный песчаник с размером зерен менее 0,22 мм, приготовленный из обломков кернового материала нескольких скважин Николо-Березовской площади и ПАВ Неонол АФ9-12.

Растворы НПАВ нужной концентрации готовились на модели воды с плотностью 1,10 г/см3. Объемный расход фильтрующейся жидкости составлял 6 см3/ч, температура опыта 23-25 °С. После достижения на выходе из пористой среды исходной концентрации НПАВ продолжали фильтрацию воды с целью изучения десорбции ПАВ.

Данные по адсорбции НПАВ, заимствованные из этой работы, приведены в Таблице 1.

Таблица 1 - Результаты определения адсорбции НПАВ

НПАВМассовая доля НПАВ в растворе, %Длина модели пористой среды, м13Адсорбировалось НПАВ, мг/гДесорбировалось НПАВ, мг/гАдсорбировалось НПАВ, мг/гДесорбировалось НПАВ, мг/г123456ОП-10 Неонол АФ9-120,05 0,10,51 1,190,38 1,00,23 1,020,13 0,78В обеих сериях опытов с увеличением длины пористой среды адсорбция НПАВ несколько снизилась. Передний фронт оторочки НПАВ проходит через более длинные пористые среды с некоторым опережением. Это, очевидно, свидетельствует о том, что на водонасыщенных пористых средах при небольших скоростях фильтрации процесс адсорбции НПАВ протекает в условиях, близких к равновесным, и длина пористой среды не играет существенной роли. Значение адсорбции, определенное при лабораторных исследованиях, будет значительно выше, чем в промысловых условиях.

Опыт закачки раствора ПАВ в пласты показывает, что фронт адсорбции реагента в пластах растянут. В этих условиях концентрация раствора ПАВ в скважинах будет возрастать медленно. Лабораторные исследования показывают, что при скоростях фильтрации, поддерживаемых при заводнении нефтяных залежей, зона адсорбции превышает область предельной адсорбции в 10 раз и более. В промысловых условиях зону адсорбции можно определить, пробурив оценочную скважину рядом с нагнетательной. Наблюдая за концентрацией раствора в оценочной и следующей за ней добывающей скважинах, можно по трем точкам установить изменения во времени концентрации ПАВ в водном растворе.

Провести специальные промысловые исследования по адсорбции весьма затруднительно, в этой связи представляют огромный научный интерес все материалы по данному вопросу.

Первые промысловые исследования адсорбции и десорбции ПАВ в промысловых условиях были проведены на Нагаевском Куполе Арланского месторождения в 1964 г. Здесь был создан очаг из пяти скважин, в центре - нагнетательная, добывающие находились от нее на расстоянии 100 м. Перед началом закачки 0,05%-ного водного раствора ПАВ ОП-10 скважины давали практически чистую нефть . В первых же пробах воды было зафиксировано наличие ПАВ концентрацией до 5% от исходной, т. е. 0,0025%. После прокачки раствора ПАВ в количестве 2,4 объема пор заводняемого пласта концентрация достигла 10-30% от исходной. По этим данным расчетное значение адсорбции на породе не превышало 0,07 мг/г. Проведенные в 1968-1972 гг. промысловые эксперименты на Николо-Березовской площади в условиях более редкой сетки скважин показали содержание ПАВ в продукции добывающих скважин опытных участков до 2% от исходной концентрации. В отдельных случаях выходная концентрация ПАВ в продукции добывающих скважин составляет 30% от исходной. Расчетное значение адсорбции изменялось в пределах 0,01-0,02 мг/г породы . Приведенные сведения о раннем появлении ПАВ в добываемой продукции эксплуатационных скважин некоторые исследователи связывали с незначительным значением адсорбции ПАВ в пластовых условиях, не принимая во внимание многочисленные экспериментальные исследования, свидетельствующие о значительных потерях ПАВ за счет адсорбционных процессов, происходящих на керновой породе в моделированных условиях пласта . Хотя вышеизложенное явление может иметь и другое объяснение, связанное со структурой и неоднородностью коллекторов, диффузией ПАВ в нефть и др.

При промысловом эксперименте по закачке ПАВ на Николо-Березовской и Вятской площадях Арланского месторождения в 1981 -1983 гг. осуществлялся постоянный контроль за концентрацией ПАВ в добываемой продукции скважин. За это время заметных выходных концентраций ПАВ по опытным скважинам зафиксировано не было. Максимальная массовая доля ПАВ, которую удалось обнаружить на одной из скважин, составляла 0,01 и 0,008 %. В грандиозном эксперименте, проводимом в 1967-1983 гг. на Арланском месторождении, было выполнено 4992 анализа по выявлению ПАВ в воде добывающих скважин, причем ежегодно их количество возрастало. Так, в 1967 г. было сделано 123, в 1980г. - 602 анализа, а в 1982 г. - 929 анализов. Результаты анализа этих материалов показали, что обнаруженная концентрация ПАВ в добываемой продукции добывающих скважин не превышала фоновых значений.

2. Сталагмометрическое определение поверхностного и межфазного натяжений водных растворов поверхностно-активных веществ (ПАВ)

.1 Описание сталагмометра

В качестве средства измерения используется сталагмометр СТ-1.

Основной частью прибора является микрометр 1, обеспечивающий фиксированное перемещение поршня 2 в цилиндрическом стеклянном корпусе медицинского шприца 3. Шток поршня 2 соединен с пружиной 4, благодаря чему исключается его самопроизвольное перемещение.

Микрометр со шприцом укреплены с помощью скобы 5 и втулки 6, которая может свободно передвигаться по стойке штатива 7 и фиксироваться на любой ее высоте винтом 8. На наконечник шприца надета капиллярная трубка из нержавеющей стали 9 (капилляр). Для определения поверхностного натяжения растворов ПАВ на границе с воздухом используется капилляр с прямым кончиком, а для межфазного натяжения методом счета капель - капилляр с загнутым кончиком. При вращении микровинта, пружина 4, сжимаясь, давит на шток поршня 2, который, перемещаясь в корпусе шприца, заполненного исследуемой жидкостью, выдавливает ее из кончика капилляра 10 в виде капли. При достижении критического объема капли отрываются и падают (для измерения поверхностного натяжения методом счета капель) или всплывают и образуют слой (для измерения межфазного натяжения методом объема капель).

Рисунок 1 - Установка по определению межфазного натяжения СТ-1

Поскольку величина межфазного и поверхностного натяжения зависит от температуры соприкасающихся фаз, сталагмометр помещен в термостатирующий шкаф.

2.2 Определения поверхностного натяжения растворов ПАВ методом счета капель

Поверхностное натяжение (σ) возникает на границе раздела фаз. Молекулы на границах раздела фаз не полностью окружены другими молекулами того же вида по сравнению с соответствующими молекулами в объеме фазы, поэтому поверхность раздела фаз в межфазном поверхностном слое всегда является источником силового поля. Результат этого явления - нескомпенсированность межмолекулярных сил и наличие внутреннего или молекулярного давления. Для увеличения площади поверхности необходимо вывести молекулы из объемной фазы в поверхностный слой, совершив работу против межмолекулярных сил.

Поверхностное натяжение растворов определяют методом счета капель с использованием сталагмометра, который заключается в отсчете капель при медленном вытекании исследуемой жидкости из капилляра. В данной работе используется относительный вариант метода, когда одна из жидкостей (дистиллированная вода), поверхностное натяжение которой при данной температуре точно известно, выбирается в качестве стандартной.

Перед началом работы сталагмометр тщательно промывают хромовой смесью, затем несколько раз ополаскивают дистиллированной водой, так как следы жира (ПАВ) сильно искажают полученные результаты.

Сначала опыт проводят с дистиллированной водой: набирают раствор в прибор и дают жидкости по каплям вытекать из сталагмометра в стаканчик. Когда уровень жидкости достигнет верхней метки, начинают отсчет капель n0; отсчет продолжают до достижения уровнем нижней метки. Эксперимент повторяют 4 раза. Для расчета поверхностного натяжения используют среднее значение количества капель. Разница между отдельными отсчетами не должна превышать 1-2 капли. Поверхностное натяжение воды σ0 табличная величина. Плотность растворов определяется пикнометрически.

Повторяют эксперимент для каждой исследуемой жидкости. Чем меньше поверхностное натяжение истекающей из сталагмометра жидкости, тем меньший объем имеет капля и тем больше будет число капель. Сталагмометрический метод дает достаточно точные значения поверхностного натяжения растворов ПАВ. Измеряют число капель n исследуемого раствора, вычисляют поверхностное натяжение σ по формуле

где s0 - поверхностное натяжение воды при температуре опыта,и nх - число капель воды и раствора,

r0 и rх - плотности воды и раствора.

По полученным данным эксперимента строится график зависимости величины поверхностного натяжения на границе раствор ПАВ - воздух от концентрации (изотерма поверхностного натяжения).

2.3 Определение межфазного натяжения растворов ПАВ

Среди многообразных поверхностных явлений, протекающих на границах раздела фаз, особое влияние оказывает межфазное натяжение.

При рассмотрении системы вода - нефть на их границе раздела всегда существует межфазное натяжение. Молекула воды, удаленная от поверхности раздела, со всех сторон окружена другими молекулами воды. Поэтому результирующая сила взаимодействия этой молекулы с другими молекулами равна нулю. Молекула, расположенная на поверхности раздела, подвержена действию, с одной стороны, молекул масла, расположенных выше границы раздела, а с другой стороны, молекул воды, лежащих ниже этой границы. Результирующая сила взаимодействия этой молекулы не равна нулю. Вследствие этого возникают силы межфазного натяжения и образуется поверхностный слой типа упругой мембраны.

Величина межфазного натяжения разных тел на границе раздела различных соприкасающихся фаз не одинакова и является для них физической характеристикой.

Приборы для определения межфазного натяжения основываются на измерении усилия, необходимого для разрыва поверхности межфазного раздела по периметру определенной длины. Наибольшее распространение получил метод определения объема капель, выдавливаемых из капилляра на границе раздела фаз.

Межфазное натяжение па границе двух жидкостей определяется но формуле:

σ = К V (ρ1 - ρ2), (1.7)

ρ1, ρ2 - плотность граничащих жидкостей, кг/м3.

Для определения постоянной капилляра необходимо замерить межфазное поверхностное натяжение такой органической жидкости на границе с дистиллированной водой, для которой это значение имеется в справочнике. Например, величина поверхностного натяжения на границе октан - дистиллированная вода по справочнику равна 50,98 мН/м.

Определив на сталагмометре объем выдавливаемой капли, постоянную К капилляра определяют по формуле

К = 50,98/, (1.8)

где К - постоянная капилляра, мНм3 / (м·кг);

98 - значение поверхностного натяжения на границе октан -дистиллированная вода, мН/м;объем всплывшей капли в делениях шкалы;

ρв - плотность воды, кг/м3;

ρо - плотность октана, кг/м3.

Проведение испытания

Устанавливается температура в термостате, равная 30 °С. Шприц заполняется нефтью и закрепляется с помощью скобы 14 на штативе. В стаканчик до метки наливается дистиллированная вода и в нее помещается загнутый капилляр, который с помощью медицинской иглы 10 надевается на шприц 4. Поверхность капилляра должна быть обезжирена хромовой смесью (концентрированная серная кислота + хромовокислый калий). Записывается число делений лимба микрометра и включается в сеть электродвигатель, который приводит во вращение микровинт, сообщающий поршню поступательное движение. Поршень шприца 4 начинает медленно перемещаться, вытесняя тем самым нефть из капилляра. В связи с этим на кончике капилляра формируется капля, которая при достижении критического объема, отрывается от капилляра и всплывает на поверхность воды. В момент отрыва капли необходимо отключить электродвигатель от электросети и записать число делений лимба микрометра. Высчитывается объем выдавливаемой капли в делениях лимба микровинта. Проводится не менее 10 подобных замеров и берется среднее значение объема капли V, по которому вычисляется величина межфазного натяжения на границе нефть-дистиллированная вода

σв-н = К V (ρв - ρн), (1.9)

где σ - межфазное натяжение, мН/м;

К - постоянная капилляра, мНм3 / (м·кг);- объем выдавливаемой капли, в делениях шкалы;

ρн - плотность нефти, кг/м3

По полученным данным эксперимента строится график зависимости величины межфазного поверхностного натяжения на границе нефть-вода от температуры.

2.4 Результаты экспериментальных исследований поверхностной и межфазной активности ПАВ

После подготовки сталагмометра к проведению измерений нами была произведена тарировка прибора. Была рассчитана константа К на границе дистиллированная вода - октан (К = 0,008974). Затем мы проводили лабораторные исследования при комнатной температуре (24 С). Результаты приведены в Таблице 2, 3.

Таблица 2 - Результаты измерения поверхностного натяжения растворов ПАВ, дистиллирована вода

Концентрация, %Плотность, г/см3Количество капель, шт.Поверхностное натяжение, мН/мвода0,99812272,980,050,99522234,60,10,99523832,30,20,99524331,60,30,99525630,00,40,99425729,90,50,99425829,80,60,99426029,50,70,99326129,40,80,99326229,30,90,99326429,11,00,99326628,8

По Таблице 2 была построена изотерма поверхностного натяжения (Рисунок 2).

Рисунок 2 - Изотерма поверхностного натяжения растворов ПАВ

Рисунок 3 - Изменение относительного поверхностного натяжения

Как видно, для раствора концентрацией 0,1 % поверхностное натяжение меньше примерно на 15%. Максимальное изменение характерно для раствора 5% концентрации, оно составляет 40% или снижено в 2,5 раза. При этом значения для 2.5 и 5 % близки.

Межфазное натяжение на границе трансформаторное масло - дистиллированная вода составляет 41,5 мн/м. Эксперименты проводили с нефтью Девонского отложения Серафимовского месторождения Республики Башкортостан Российской Федерации.

Результаты представлены в Таблице 3.

Таблица 3 - Результаты измерения межфазного натяжения растворов ПАВ, дистиллированная вода

Концентрация, %Значения лимбаКонстантаПлотность раствора, г/см3Плотность трансформаторного масла, г/м3Межфазное натяжение, мН/мДистиллированная вода300,00897499884441,50,052,50,0089749958443,40,11,90,0089749958442,60,21,80,0089749958442,40,31,80,0089749958442,40,41,70,0089749948442,30,51,60,0089749948442,20,61,50,0089749948442,00,71,40,0089749938441,90,81,30,0089749938441,70,91,20,0089749938441,61,01,10,0089749938441,5

Как видно, максимальное снижение МН характерно для 5% раствора. Снижение составляет примерно 19 раз, что представлено ярко на рисунке 6.

Рисунок 4 - Изотерма межфазного натяжения растворов ПАВ, дистиллированная вода

Рисунок 5 - Изменение относительного межфазного натяжения

По рисунку видно, что значения для 2.5 и 5 % близки. Оба значения предположительно покажут высокую отмывающую способность, что следуетподтвердить в последующих экспериментах по отмыву почвы и песка от нефтяного загрязнения.

3. Экспериментальные исследования механизма вытеснения модели нефти растворами ПАВ из пористой среды

.1 Обоснование выбора модели с использованием критериев подобия

При подготовке к проведению экспериментов были рассчитаны и изготовлены насыпные модели, руководствуясь известными критериями подобия при фильтрации через модели, пласта.

Расчет размеров модели и условий эксперимента исходя из критериев подобия пластовых и модельных условий.

Общепринято в настоящее время при проведении фильтрационных исследований использовать условия подобия и вытекающие из них количественные критерии подобия, рассмотренные в работе . Выбор параметров экспериментов основан на безразмерных отношениях величин, характеризующих физический процесс, происходящий в исследуемой модели. Метод анализа размерностей или приведение к безразмерному виду уравнений, описывающих изучаемый процесс, позволяют получить критерии подобия.

При осуществлении физического моделирования практически невозможно поддерживать условие

потому что в этом случае проницаемость модели должна быть слишком мала. Таким образом, затрудняется точнее моделирование процесса.

Приближенное моделирование осуществимо при пренебрежении величиной капиллярного давления и допущении, что процесс не зависит от соотношения, где σ - коэффициент поверхностного натяжения на границе раздела фаз, ΔP - перепад давления на модели. С капиллярностью связан только комплекс влияющий на значения фазовых проницаемостей по нефти и воде. Приближенное подобие достигается при сохранении условия

и требования от используемой модели условия, что величина капиллярного давления незначительна но сравнению с общим перепадом по модели.

Известно понятие стабилизированной зоны - области, в которой происходит переход от движения чистой нефти к отмыву нефти. Длина этой области приблизительно постоянна.

Допустим, что в экспериментах относительный размер стабилизированной зоны равняется величине x*,тогда соответствующее значение критерия подобия

π1 = x* / c,(1.13)

где с - параметр, который зависит от соотношения вязкостей вытесняющей воды и нефти (Рисунок 6).

Проведенные исследования показывают, что для π1 ≤ 0,6 нефтеотдача практически не зависит от дальнейшего уменьшения этого критерия.

Помимо критерия π1, необходимо удовлетворение критерия

Рисунок 6 - Зависимость параметра «C» от отношения вязкости воды и нефти

В результате экспериментов установлено, что для слабоцементированных песчаников изменение критерия π2 влияет на процесс вытеснения лишь до значения π2 = 0,5 * 106. При более высоких значениях π2 процесс становится автомодельным, это позволяет не соблюдать равенство чисел π2 для модели и натуры и ограничиться в проводимых экспериментах тем значением этого параметра, при превышении которого его изменение несущественно влияет на процесс. График зависимости безводной нефтеотдачи от критерия π2 приведен на Рисунке 7.

Теперь определим параметры экспериментов по вытеснению нефти, при которых достигается приближенное подобие при относительно размерах образца.

Рисунок 7 - Зависимость безводной нефтеотдачи от критерия π2 по

Из формулы (1.14) находится минимальный перепад давления модели

DP min=s с/ (p2min×k×DP),(1.15)

Из соотношения (1.10) учитывая, что для соблюдения подобия должно выполняться его соотношение

получим формулу для минимальной длины модели

=(p2min×k×DP)/s, (1.16)

Подставляя из (1.15) значение DPmin получим

Коэффициент π1 рекомендуется брать равным ≤0,5, примем p1 = 0,26, p2 равным 0,5×106, x* =0,26×С. Средняя пористость насыпных моделей 0,38, средняя проницаемость по воде для насыпной модели при проведении экспериментов равна 0,186 мкм2, измеренное межфазное натяжение на границе "вода-трансформаторное масло" составляет s = 41,5 мН/м2, динамическая вязкость трансформаторного масла, использованного при проведении экспериментов - μн = 9,924 мПа×с, вязкость воды μв = 0,914 мПа, . Как видно (Рисунок 6) для μо = 0,0921 величина С = 0,48.

Тогда из формулы находим минимальный перепад давления


Минимальную длину образца можно оценить по условию (1.17), отсюда

Одним из основных факторов, влияющих на механизм вытеснения модели нефти водой является соблюдение правил выбора модели пласта. При проведении опыта процесс должен быть точно или же приближенно подобным натуральному, т.е. при вытеснении нефти водой должны обеспечиваться условия подобия, что при вытеснении трансформаторного масла водой, длина модели должна быть не меньше длины стабилизированной зоны. Основными критериями, характеризующими процесс вытеснения масла водой, являются:

где π1 - критерий пласта и модели, выражающий отношение перепада давления к капиллярному давлению на водо-нефтяном контакте;

π2 - критерий, выражающий отношение капиллярного давления к градиенту внешнего давления.

А.А.Эфрос указывает, что при значении критерия π1≤0,6 нефтеотдача мало зависит от дальнейшего уменьшения этого параметра, и поэтому в опытах по вытеснению масла водой можно не учитывать пластовое значение π1, а ограничиться его максимально допустимой величиной.

При π2≥0,5·106 также можно не соблюдать равенство для модели и натуры, а ограничиться в опытах тем значением π2, выше которого его изменение не оказывает существенного влияния на процесс вытеснения. Эти соображения позволяют определять параметры опытов по вытеснению масла водой, в которых при сравнительно небольших размерах образца достигается приближенное подобие.

3.2 Проведение испытания по вытеснению

Целью работ по вытеснению нефти из моделей пластов является оценка эффективности применения метода повышения нефтеотдачи с использованием ПАВ.

Добавка ПАВ к закачиваемой воде приводит к снижению межфазного натяжения волы на границе с нефтью. При низком межфазном натяжении капли нефти легко деформируются, благодаря чему уменьшается работа, необходимая для проталкивания их через сужения пор, что увеличивает скорость их перемещения в пласте. Добавка ПАВ к воде приводит к уменьшению краевых углов избирательного смачивания, т.е. к улучшению смачиваемости породы водой. Кроме того, ПАВ способны диффундировать из водных растворов в нефть, вызывая снижение аномалий ее вязкости. И, наконец, водные растворы ПАВ обладают повышенными моющими свойствами и способствуют отрыву нефтяной пленки от поверхности пород. Под действием ПАВ происходит диспергирование нефти в воде, причем ПАВ в определенной мере стабилизируют образующуюся дисперсию. Размеры капель нефти уменьшаются. Вероятность их прилипания к твердой поверхности уменьшается. Все это в конечном итоге ведет к повышению нефтепроницаемости пористой среды и коэффициента вытеснения нефти из пласта. В нефтепромысловой практике для увеличения нефтеотдачи пласта наибольшее применение получили неионогенные ПАВ, которые либо непрерывно закачиваются в пласт в виде низкоконцентрированных (0,05-0,10 %) водных растворов, либо периодически закачиваются в виде оторочек высококонцентрированных (5-10 %) водных растворов. Лабораторные исследования показали, что при использовании ПАВ нефтеотдача может возрастать в 1,10-1,12 раза по сравнению с обычным заводнением.

Эффективность вытеснения нефти из пласта оценивается коэффициентом нефтеотдачи, который равен отношению объема излеченной из пласта нефти к первоначальному объему нефти в пласте.

Основным показателем эффективности метода повышения нефтеотдачи пластов по результатам лабораторных опытов обычно считается величина коэффициента вытеснения нефти.

В опытах по определению коэффициента вытеснения нефти, когда в качестве модели нефти используют трансформаторное масло (марка Т1500У), а в качестве нефтеносной породы - кварцевый песок.

Для проведения работы необходимо иметь трансформаторное масло (модель нефти), специально подготовленные модели продуктивного пласта - кварцевый песок с заданной фракцией зерен (обычно 2,0-3,0*10-4 м) (при моделировании терригенных пород-коллекторов). После загрузки каждой порции производится уплотнение слоя песка легким постукиванием деревянной палочкой по стеклянной трубке. Высота насыпного слоя песка должна составлять всю длину трубки до выходного отверстия, сообщающегося с атмосферой.

Определение пористости. По разности масс моделей, заполненных воздухом и водой, определяется пористость изготовленной модели. При определении пористости предполагается, что в насыщенной водой модели всё поровое пространство заполнено водой. Это положение допустимо для насыпной (несцементированной) модели, где отсутствуют закрытые, не связанные между собой поры. После набивки модель взвешивается. Масса модели, заполненной воздухом, обозначается m1. После насыщения модели водой модель повторно взвешивается. Масса модели, заполненной водой, обозначается m2. Тогда масса воды, находящейся в модели

В = m2 - m1

Так как плотность воды известна (ρВ= 1000 кг/м3), вычисляем её объём в модели

MВ / ρВ,

Пользуясь принятым ранее допущением, что вода занимает все поры модели и зная объём пустой модели (объём пустой трубы) пористость m

VВ / VПМ

где VВ - объем воды, VПМ - объем пустой модели.

По результатам экспериментов определяются:

Коэффициент вытеснения

Мвыт=Vп /Vмод

Нагнетание воды осуществляется до полной обводненности проб жидкости, выходящих из пласта. Определяется количество выделившейся жидкости, в том числе нефти.

Рассчитывается коэффициент нефтеотдачи kн(по воде) для первичного нефтевытеснения по формуле

н(по воде) = V1 / Vн,

где kн(по воде) - коэффициент нефтеотдачи первой стадии.- количество нефти, выделившейся в результате вытеснения водой (первичного нефтевытеснения), мл;н - исходная нефтенасыщенность, мл;

Затем вслед за водой в пласт нагнетается оторочка исследуемого реагента в количестве, равном одному поровому объему. После ввода реагента в пласт вновь закачивается дистиллированная вода до полной обводненности проб, выходящих из пласта. Определяется количество выделившейся жидкости, в том числе нефти.

Рассчитывается коэффициент нефтеотдачи kн(прирост) для вторичного нефтевытеснения по формуле (∆ = ± 0,5 %, δ = 1 %)

н(прирост) = Vп / Vн,

где kн(прирост) - коэффициент нефтеотдачи заключительной стадии.п - количество нефти, выделившейся в результате вытеснения оторочкой с последующим проталкиванием водой (вторичного нефтевытеснения), мл;н - исходная нефтенасыщенность, мл;

Рассчитывается коэффициент извлечения нефти (КИН) на остаточную нефтенасыщенность по формуле (∆ = ± 0,5%, δ = 1%)

н(на ост) = Vп / Vп - V1,

Рассчитывался суммарный КНО по формуле (∆ = ± 0,5%, δ = 1%)

полн = kн(по воде) + kн(прирост),

где kполн - суммарный коэффициент нефтеотдачи.

При изучении фильтрационных характеристик моделей пласта проницаемость определяли по формуле:

где k.- коэффициент проницаемости среды, м2;- объём жидкости, м3;- длина модели пласта, м;

τ - время фильтрации жидкости через пористую среду, с;

μ - динамическая вязкость жидкости, Па с;- площадь поперечного сечения образца или эффективная площадь

рассматриваемого объема пористой среды, м2;

∆р - перепад давления на длине среды, Па:- объемный расход жидкости, м3/с.

Вытеснение нефти из модели пласта производят при постоянной скорости или при постоянном перепаде давления. Объемная скорость закачки воды выбирается согласно принятой системе разработке изучаемого объекта.

В процессе вытеснения нефти непрерывно осуществляется контроль температуры, фиксируется перепад давления и расход прокачанной жидкости и вытесненной нефти.

Период безводного вытеснения нефти в опытах заканчивается после прокачки через модель пласта воды в объеме 0,5-0,8 поровых объемов всей модели. При этом вытесняется 90-95% подвижной нефти. Полное вытеснение нефти, как правило, достигается после прокачки 1,2-1,5 поровых объемов воды.

Нагнетание вытесняющей воды проводят непрерывно до полного обводнения вытесняемой жидкости. Объем вытесняемой нефти (Vн) фиксируют, при этом учитывают также нефть, отделяемую из проб воды путем их центрифугирования.

После вытеснения нефти вычисляют коэффициент нефтевытеснения по формуле: Квыт= Vн/ Vн нач, который обычно выражают в процентах.

Следующим этапом исследования является закачка оторочки (порции) композиции химреагента. Объем оторочки определяют, исходя из параметров соответствия реальным условиям или на основании серии предварительных экспериментов. После закачки оторочки композиции химреагента в модель вновь закачивают воду. На протяжении всего процесса строго фиксируют объем и состав вытесняемой жидкости и динамику изменения давления в системе.

Суммируя объем дополнительно вытесненной нефти (∆ Vн) производят расчет прироста коэффициента нефтевытеснения (∆ Квыт) и оценивают эффективность используемой композиции химреагента.

При проведении экспериментов выполняются следующие условия. Кратность проведения опытов - не менее 3-х раз. Число параллельных определений в опыте 2-3-х кратное. Математическую обработку результатов экспериментов, построение корреляционных зависимостей и расчет коэффициентов корреляции проводят с помощью ПК.

Насыпная модель пласта позволяет смоделировать лишь проницаемость пласта и, в некоторых случаях, его пористость. Структура порового пространства существенно отличается от той, которую можно наблюдать в нефтяном пласте. Связано это с тем, что в насыпной модели, состоящей из плотно упакованных песчинок, все поры связаны между собой, имеют приблизительно одинаковые размеры, отсутствуют закрытые поры. Однако на первом этапе применение насыпных моделей является целесообразным, так как требуется получить качественные закономерности процесса вытеснения нефти водным раствором ПАВ. Применительно к условиям конкретного месторождения справедливы качественные зависимости, полученные на насыпных моделях, однако количественные показатели эффективности воздействия (прирост и конечные значения коэффициента вытеснения) необходимо уточнять исследованиями воздействия водным раствором ПАВ на естественных кернах.

3.3 Меры безопасности выполнения экспериментальных работ

Сотрудники лаборатории должны знать свойства и физико-химические характеристики реактивов и новых химических веществ, поступающих на исследование.

Необходимо следить, чтобы на всех емкостях реагентов, поступающих для исследования в лабораторию, имелись этикетки или подписи с указанием содержимого и основных физико-химических характеристик с выделением особо опасных свойств: «Яд», «Огнеопасно» и т.д.

Все работы, связанные с выделением вредных газов, паров и дыма, должны проводиться в работающих вытяжных шкафах с опущенными дверцами. Кратность воздухообмена 8-10.

При проведении опытов с реагентами, не испытывавшимися ранее в лаборатории, всем сотрудникам необходимо ознакомиться с их вредными свойствами, описанными в справочнике "Вредные вещества в промышленности". При проведении экспериментов с химическими веществами необходимо использовать спецодежду и индивидуальные средства зашиты - халаты, резиновые фартуки, перчатки и др.

При работе с аппаратами, находящимися под вакуумом, а также при всех работах, связанных с возможностью засорения, ожога и раздражения глаз, необходимо надевать защитные очки или приспособления для защиты (шлем или щиток из органического стекла).

Нельзя сливать нефтепродукты и органические растворители в канализацию. Все остатки химических веществ необходимо сливать в специальные закрытые бачки с этикеткой "Слив" и ежедневно выносить из лаборатории в специально отведенные для этого места.

Лаборатория должна быть оснащена средствами пожаротушения и аптечкой для оказания первой помощи.

Огнеопасные реактивы и реагенты необходимо хранить в специально оборудованных местах с хорошей вентиляцией.

Каждый работающий в лаборатории должен знать, где расположены средства пожаротушения (кошма, листовой асбест, сухой песок, огнетушители, пожарный водяной стояк и т.д.) и уметь ими пользоваться.

Перед выполнением работы следует ознакомиться с устройством установки для определения коэффициента вытеснения нефти из модели пласта и последовательностью проведения операций.

В работах используются модели пласта, и которых сойдется невысокое избыточное давление за счет гидростатического напора жидкости.

Перед выполнением работ следует убедиться в надежном закреплении напорного сосуда на специальной площадке. Все запорные устройства экспериментальной установки до и после выполнения работ должны быть надежно закрыты.

Во избежание поломки и раската стеклянных деталей установки, порезов их осколками, разлива масла и водных растворов используемых реагентов работы необходимо вести очень осторожно, без резких движений.

В случае разлива и попадании на кожу масла и водных растворов используемых реагентов необходимо смыть их водой или мыльным раствором.

температура воздуха (20 +/- 5) °C;

влажность воздуха не более 80% при t = 25 °C;

частота переменного тока (50 +/- 1) Гц;

напряжение в сети (220 +/- 22) В.

Нельзя оставлять работающую установку без присмотра. Запрещается прием пищи и пользование открытым огнем в помещении, где находится экспериментальная установка.

Заключение

Однако, до сих пор оценивают лишь влияние концентрации реагента на величину межфазного натяжения. Вопросы, связанные с влиянием температуры на свойства ПАВ, не изучаются.

В статье рассмотрены физико-химические свойства оксиэтилированных неионных поверхностно-активных веществ, произведен обзор по структуре и свойствам.

Нами рассмотрено влияние неоднородного строения нефтяного пласта на его охват заводнением и возможные пути его повышения. Изложены результаты теоретических, лабораторных и промысловых исследований увеличения охвата пластов воздействием с применением гидродинамических, физико-химических, физических, микробиологических и других методов повышения нефтеотдачи пластов. Обоснована перспективность совершенствования заводнения с применением методов повышения нефтеодачи пластов, основанных на повышении фильтрационного сопротивления промытых зон нефтеводонасышенного коллектора.

В результате проведенных экспериментальных исследований по вытеснению высоковязкой нефти Девонского отложения Серафимовского месторождения Республики Башкортостан Российской Федерации на специально изготовленных лабораторных моделях неоднородного продуктивного пласта выявлено, что сочетание последовательной закачки вытесняющих агентов в виде водных растворов неионогенных ПАВ (технология комплексного воздействия) вызывает дополнительные физико-химические эффекты, позволяющие максимально повысить эффективность заводнения

Установлено, что неионогеиные ПАВ непосредственно введенные в нефть месторождения Девонского отложения Серафимовского месторождения Республики Башкортостан Российской Федерации или перешедшие в нее путем диффузии из водных растворов, оказывают диспергирующее действие на основные структурообразующие компоненты пластовой нефти - асфальтены, в результате чего снижаются аномалии вязкости нефти и повышается коэффициент еевытеснении из модели продуктивного пласта.

Литература

1.Разработка нефтяных месторождений. Т. 1 /Н.И. Хисамутдинов, М.М. Хасанов, А.Г. Телин и др. - М.: ВНИИОЭНГ, 1994. - 263 c

2.Галеев Р.Г. Повышение выработки трудноизвлекаемых запасов углеводородного сырья. - М.: КУГК-р, 1997. - 351 с.

.Геология, разработка и эксплуатация Ромашкинского нефтяного месторождения / Р.Х. Муслимов, A.M. Шавалеев, Р.Б. Хисамов, И.Г. Юсупов. - М.: ВНИИОЭНГ. - 1995. -Т. II. -286с. и др.

.Методы извлечения остаточной нефти / М.Л. Сургучев, А.Т. Горбунов, Д.П. Забродин и др. - М.: Недра, 1991. - 347 с.

.Применение полимеров в добыче нефти / Е.И. Григоращенко, Ю.В. Зайцев, В.В. Кукин и др. - М.: Недра, 1978. - С. 213.

.Разработка нефтяных месторождений с применением поверхностно-активных веществ / Г.А. Бабалян, А.Б. Тумасян, Б.И. Леви и др. - М.: Недра, 1983. - 216 с.

.Сургучев М.Л., Швецов В.А., Сурина В.В. Применение мицеллярных растворов для увеличения нефтеотдачи пластов. - М.: Недра, 1977. - 120 с.

.Сургучев М.Л. Вторичные и третичные методы увеличения нефтеотдачи пластов. - М.: Недра, 1985. - 235 с. и др.

.О комплексной системе разработки трудноизвлекаемых запасов нефти / Р.Х. Муслимов, Р.Г. Галеев, Э.И. Сулейманов и др. // Нефтяное хозяйство. - 1995. - № 42. - С. 26-34.

.Ганиев P.P. Технология повышения нефтеотдачи пластов на основе ПАВ // Нефтепромысловое дело. - 1994. - №. 5. - С. 8-10.


Вытеснение нефти углекислым газом.

Вязкость нефти должна быть меньше 10-15 мПа·с, так как при

более высокой вязкости ухудшаются условия смесимости СО 2 с нефтью. Все известные промышленные опыты с углекислым га­зом проводились на месторождениях с меньшей вязкостью нефти.

Пластовое давление должно быть более 8-9 мПа для обеспе­чения лучшей смесимости углекислого газа с нефтью , которая повышается с увеличением давления.

Толщина монолитного пласта более 25 м снижает эффектив­ность из-за проявления гравитационного разделения газа и нефти и снижения охвата вытеснением.

2. Нагнетание водогазовых смесей .

Вязкость нефти более 25 мПа·с неблагоприятна для примене­ния метода. Как и при обычном заводнении, происходят неустой­чивое вытеснение нефти и образование байпасов.

Большая толщина пласта способствует гравитационному раз­делению газа и воды и снижению эффективности вследствие умень­шения охвата вытеснением.

3. Полимерное заводнение .

Температура пласта более 70 °С приводит к разрушению моле­кул полимера и снижению эффективности.

При проницаемости пласта менее 0,1 мкм 2 процесс полимер­ного заводнения трудно реализуем, так как размеры молекул рас­твора больше размеров пор и происходит либо кольматация призабойной зоны, либо механическое разрушение молекул.

В условиях повышенной солености воды и содержания солей кальция и магния водные растворы полиакриламида становятся неустойчивыми, нарушается их структура и пропадает эффект за­гущения (повышения вязкости) воды; полимеры биологического происхождения не нуждаются в этом ограничении.

4. Нагнетание водорастворимых ПАВ.

Недопустима температура пласта более 70 °С по тем же причи­нам, что и для полимера.

Пласты с высокой смачиваемостью водой (гидрофильные) неблагоприятны для применения водорастворимых ПАВ, так как их эффект направлен на повышение смачиваемости пористой среды.


  1. Вытеснение нефти мицеллярными растворами.
Так как мицеллярные растворы обязательно применяются вместе с полимерными, то на них распространяются те же ограни­чения по температуре, проницаемости пласта и солености.

Мицеллярные растворы на основе нефтяных сульфонатов при большом содержании солей кальция и магния в пласте, вслед­ствие ионного обмена этих солей с натрием в сульфонате, превра­щаются в высоковязкие эмульсии, резко снижающие проводимость пластов.

Вязкость нефти допускается не более 15 мПа·с, так как для выравнивания подвижности требуется повышать вязкость мицел-лярного раствора за счет дорогостоящего компонента (спирта).

Продуктивные пласты могут быть представлены только песчани­ками, так как в карбонатных пластах содержится много ионов кальция и магния, которые разрушают нефтяные сульфонаты и мицеллярные растворы.

6. Вытеснение нефти горением.

Вязкость нефти должна быть более 10 мПа·с, так как для поддержания процесса горения нефти в пласте требуется достаточ­ное содержание в ней кокса (асфальтенов).

При толщине пласта менее 3 м и проницаемости менее 0,1 мкм 2 этот метод нецелесообразен из-за больших непродуктивных потерь теплоты в кровлю и подошву залежи.

Требуется глубина пласта более 150 м, чтобы обеспечить доста­точную толщину покрывающих пород для контроля за процессом горения и не допустить прорыва продуктов горения на поверхность.

7. Вытеснение нефти паром.

Толщина пласта менее 6 м недопустима по экономическим со­ображениям. Процесс вытеснения нефти паром становится невыгод­ным из-за больших потерь теплоты через кровлю и подошву залежи.

Глубина залегания пласта не должна превышать 1200 м из-за потерь теплоты в стволе скважины, которые достигают 3 % на каждые 100 м глубины, и технических трудностей обеспечения прочности колонн, особенно у устья скважин.

Желательно, чтобы проницаемость пласта была более 0,2 - 0,3 мкм 2 , а темп вытеснения нефти был достаточно высоким для уменьшения потерь теплоты в кровлю и подошву залежи.

Общие потери теплоты в стволе скважин и в пласте не должны превышать 50 % поданной на устье нагнетательной скважины, чтобы получить экономический эффект от процесса.


  1. Вытеснение нефти раствором щелочи.
Ограничения в применении этого метода увеличения нефтеотдачи пластов минимальные.

Эффективность его применения зависит прежде всего от состава пластовой нефти.

Метод неприменим, если пластовая нефть обладает малым индексом кислотности (отношение содержания гидроокиси калия к массе нефти)- менее 0,5 мг/г.

Применение щелочных растворов не ограничивается температу­рой и типом коллектора. В отличие от всех других физико-химиче­ских методов щелочные растворы вполне применимы при темпера­турах до 150-200 °С, а также в карбонатных пластах.

Поскольку щелочные растворы повышают смачиваемость по­роды пласта водой, то они обладают преимуществом перед дру­гими методами для применения в предпочтительно гидрофобных и гидрофобизованных пластах.

Применение щелочных растворов неэффективно в пластах с большим содержанием глин (более 10%), в которых коэф­фициент вытеснения нефти такой же, как и обычной водой.

Все приведенные критерии применимости методов увеличения нефтеотдачи пластов можно использовать лишь для первичного отбора методов, определения перспектив их внедрения и потен­циальных масштабов применения.

При выборе методов повышения нефтеотдачи пластов для какого-либо конкретного месторождения нефти может сложиться ситуация, когда исходя из указанных критериев , понадобятся два-три метода. В этом случае принятие решения о применении того или иного метода повышения нефтеотдачи пластов должно основы­ваться на детальных технологических и экономических расчетах с учетом наличия материально-технических средств и капитальных вложений, а также целей по добыче нефти.

Некоторая часть запасов нефти на многих месторождениях (с сильнотрещиноватыми пластами) вообще непригодна для при­менения всех известных методов увеличения нефтеотдачи пластов, кроме циклического заводнения. Для таких запасов нефти необхо­дим целенаправленный поиск неизвестных методов или видоизме­нение, комбинирование известных разработанных методов воздей­ствия на пласты со специфическими геолого-физическими свой­ствами.
Эффективность методов увеличения нефтеотдачи пластов

Во всех случаях промышленного испытания и внедрения мето­дов увеличения нефтеотдачи пластов возникает необходимость оценки их эффективности по промысловым данным. На стадии опытных работ это необходимо для того, чтобы принять решение о целесообразности промышленного применения метода, а на ста­дии промышленного внедрения, чтобы определить эффективность от затраченных средств. При этом, естественно, требуется объектив­ная, достоверная оценка эффективности метода, чтобы не завысить и не занизить его потенциальных возможностей. При оценке эф­фективности методов необходимо различать следующие понятия эффективности.


  1. Идеальная (И)-истинная, потенциальная (теоретическая) эффективность метода, которую можно было бы достигнуть при самых благоприятных условиях пласта, идеальном проведении процесса, с использованием всех его энергетических и физических
    возможностей.

  2. Возможная (В)-проектная эффективность метода при правильном отражении и использовании всех особенностей его механизма и оптимальной технологии процесса для подходящего месторождения.

  1. Достигаемая (Д)-фактическая эффективность метода, реализуемая в пласте при практических условиях осуществления процесса, с неизбежными отклонениями от проектной технологии, с несоответствиями качества материально-технических средств и др.

  2. Оцениваемая (О) - измеренная или определенная тем или иным способом по промысловым данным эффективность метода, зависящая от точности способа, достоверности исходных данных и объективности определения.
Обычно идеальная или потенциально возможная эффективность метода увеличения нефтеотдачи пластов (И) достигается в лабо­раторных условиях при высокой степени изученности процесса. На практике такая эффективность недостижима. Например, при смешивающемся вытеснении нефти газом или мицеллярными рас­творами достигается извлечение 95-98 % нефти из относительно однородных пористых сред. В реальных условиях на такое извле­чение нефти рассчитывать не приходится из-за более сложного строения пластов и отличия промышленного процесса от лабора­торного. Однако долгое время коэффициент вытеснения нефти водой в лабораториях из моделей пласта называли нефтеотдачей пласта. А некоторые специалисты до сих пор эффективность, полу­ченную в лаборатории, переносят на практические условия, ото­ждествляя ее с конечной нефтеотдачей пласта , предельно достижи­мой в реальных условиях (В).

Возможная или проектная эффективность метода определяется при проектировании и зависит от адекватности расчетных моделей процессу и достоверности исходных данных. Даже в лучшем слу­чае в проектах происходит завышение эффективности процесса, так как реальные условия разработки пластов зависят от многих неустойчивых факторов и всегда сложнее схематизированных упрощенных расчетных моделей фильтрации жидкостей и вытесне­ния нефти активными агентами. Фактически достигаемая эффек­тивность метода увеличения нефтеотдачи пласта (Д)-конкретная, однозначная величина, как правило, ниже проектной эффективности в силу неизбежных отклонений от заданной (оптимальной) техно­логии при реализации процесса, изменении характеристики свойств рабочего агента, условий его нагнетания, эксплуатации сква­жин и др.

И наконец, оцениваемая эффективность метода (О) по про­мысловым данным при точном измерении и определении должна быть ниже фактически достигаемой, так как весь объем пласта, подвергнутый воздействию рабочего агента, невозможно измерить, а косвенные определения эффекта через продукцию и исследова­ния скважин искажены запаздыванием его проявления.

Поэтому указанные понятия эффективности методов увеличения нефтеотдачи пластов связаны соотношением

И > В > Д О

Это всегда необходимо помнить при решении вопроса о приме­нении метода.

Однако практически оценки и определения эффективности ме­тодов увеличения нефтеотдачи пластов по промысловым данным неоднозначны и могут быть как заниженными, так и завышен­ными, по сравнению с достигаемой эффективностью, из-за следую­щих одновременно действующих причин:

недостаточность, непредставительность промысловой информа­ции или отсутствие необходимых данных;

погрешность, искаженность информации (ошибки в размерах участков);

наложение на результаты побочных эффектов от других прово­димых мероприятий (циклическое воздействие, обработка сква­жин, загрязнение призабойных зон, форсирование отбора и др.);

несоответствие используемого способа оценки эффекта особен­ностям метода;

неопытность или необъективность технологов, определяющих эффект.

Вследствие этих причин иногда возникают большие противоре­чия в оценке эффективности и даже возможностей методов, осо­бенно малопотенциальных. Например, оценки эффективности за­воднения с поверхностно-активными веществами типа ОП-10, про­веденные различными специалистами для одних и тех же условий, отличаются в 3-4 раза (от 2-4 до 10-12 % увеличения конечной нефтеотдачи пластов). Чтобы достигнуть достоверной оценки эф­фективности методов увеличения нефтеотдачи пластов, при прове­дении промышленных опытов необходимо стремиться к устранению всех указанных осложняющих причин.

Для этого требуется следующее. Из каждой скважины извлекать максимум данных о свойствах пластов, жидкостей, условиях вытеснения нефти и притока нефти , т. е. обеспечивать полный вынос керна, отбирать пробы нефти, газа и воды на анализ, проводить геофизические и гидродинами­ческие исследования, точные замеры дебитов нефти, расходов и добычи воды, газовых факторов, температуры и др.

Размеры опытных участков и размещение скважин должны быть такими, чтобы исключить ошибку в проведении границы зоны, подвергнутой воздействию рабочего агента. Измерения всех вели­чин и параметров должны быть максимально точными.

Во время проведения нового процесса воздействия на пласты надо обеспечить чистоту призабойных зон скважин (не загряз­нять), сохранять неизменными условия эксплуатации скважин не только в пределах опытных участков, но и смежных зон. Если же изменения условий разработки залежи (циклическое воздействие, изменение направления потоков жидкости, обработки призабойных зон скважин, повышение депрессий на пласт и др.) неизбежны, то требуется разделение эффектов от нового метода и от других мероприятий. Загрязнение призабойных зон может исказить реаль­ную эффективность метода.

Эффективность разных методов увеличения нефтеотдачи пла­стов, применяемых в различных геолого-физических условиях, тре­буется определять различными способами в зависимости от харак­тера проявления эффекта и наиболее представительных показа­телей.

Эффективность методов увеличения нефтеотдачи пластов должны определять специалисты, понимающие механизм процессов, физико-химические и гидродинамические процессы, а также гео­логическое строение нефтяного пласта.

Оценка технологического эффекта на поздней стадии разработки

Объективная экстраполяция показателей добычи нефти и дру­гих показателей разработки залежи, участка - основной и наи­более точный способ определения технологического эффекта по фактическим результатам опытно-промышленных работ или про­мышленного внедрения метода повышения нефтеотдачи пластов. Существуют различные способы графоаналитического или стати­стического анализа эффективности методов увеличения нефтеот­дачи пластов, основанные на отыскивании эмпирической зависи­мости изменения показателей разработки базового варианта в период до начала применения метода и экстраполяции ее на будущий период его применения.


  1. Зависимость нефтеотдачи η от накопленного отбора жидкости, отнесенного к балансовым запасам τ : η = f (τ).

  2. Зависимость накопленной добычи нефти Q н Q в или жидкости Q ж : Q н = f (lg Q в ) или Q н = f (lgQ ж ).

  1. Зависимость логарифма суммарного водонефтяного отношения w от логарифма накопленного отбора воды Q в : lg w = f (lg Q в ).

  2. Зависимость логарифма текущего водонефтяного отношения w от накопленной добычи нефти Q н : lgw = f (Q н ).

  3. Зависимость логарифма доли нефти добываемой продук­ции n н от логарифма накопленного отбора жидкости Q ж : lg n н = f (lgQ ж ).
Если базовым вариантом разработки являлось заводнение, то отыскиваются такие способы выражения накопленной добычи нефти, которые приближались бы к прямолинейной зависимости ее от другого промыслового показателя (характеристики вытесне­ния). Если базовыми являлись режимы истощения, то удобнее анализировать изменение текущих показателей - отборов нефти, или дебитов нефти на одну добывающую скважину.



Рис. 4. Зависимость накопленной до­бычи нефти и нефтеотдачи пласта η от безразмерного времени τ без применения (1) и с применением (2) методов

увели­чения нефтеотдачи.

Q , ∆η - соответственно прирост накопленной добычи нефти и нефтеотдачи за счет метода повышения нефтеотдачи пласта (МПНП); τ б , τ м -предельное безразмерное время для заводнения и применяемого МПНП соответ­ственно

Рис. 5. Зависимость фактическая (1) и прогнозная (2) накопленной добычи нефти Q н от логарифма накопленной добычи воды (жидкости) lgQ в (lgQ ж).

Q н, ∆η - прирост накопленной добычи нефти и нефтеотдачи

соответственно; ∆Q в - экономия воды (жидкости)

Рис. 6. Зависимость фактическая (1) и прогнозная (2) логарифма

водонефтяного фактора lg w от логарифма накопленной добычи воды lg Q в

Рис. 7. Зависимость фактическая (1) и прогнозная (2) логарифма

водонефтяного фактора lg w от накоплен­ной добычи нефти Q н

В настоящее время создано несколько десятков аппроксимаций фактических показателей разработки объектов при заводнении. Большое их разнообразие связано с попытками уменьшить прису­щие всем им следующие недостатки.


Рис. 8. Зависимость фактическая (1) и прогнозная (2) логарифма доли нефти

в потоке lg n н от логарифма накопленной добычи жидкости lg Q ж

Рис. 9. Зависимость фактическая (1) и прогнозная (2) изменения

Текущей добычи нефти q от времени t

q 0 - начальный дебит (добыча)


Применение способов прогнозирования основных технологиче­ских показателей разработки при заводнении возможно только при обводнении добываемой продукции скважин от 30 до 90 %. Все имеющиеся способы не учитывают технологических изме­нений при разработке объекта (бурение дополнительных скважин, изменение режима работы скважин и др.). Отсутствие универсальных способов, применимых для любых объектов, и в результате необходимость предварительной апроба­ции в конкретных условиях.

Период прогноза на будущее не может быть больше периода , предшествующего обводнению. На ранних стадиях заводнения это ограничивает их применение, точность прогноза становится очень низкой.

Несмотря на указанные недостатки, сопоставление фактиче­ских показателей разработки объекта с применением метода повы­шения нефтеотдачи пластов и прогнозных, полученных до приме­нения метода, наиболее надежно и наглядно (рис. 4).

Большой практический опыт использования различных графо­аналитических способов сравнения показателей разработки раз­личных объектов, прогноза перспектив разработки месторождений при заводнении, оценки технологической эффективности различных технологических мероприятий, проводимых на месторождениях, позволяет рекомендовать пять предпочтительных способов (рис. 5-9), к основным достоинствам которых относятся сле­дующие:

достаточно высокая надежность получаемых результатов;

простота использования и наглядность;

возможность интегрального учета геологических особенностей строения пласта;

возможность определения различных показателей эффективно­сти и добычи нефти за счет применения метода, снижения добычи воды, повышения темпа разработки и др.

Точность оценки технологической эффективности методов в значительной мере зависит от соблюдения технологии разработки объекта во время применения метода (такой же, как и до приме­нения), а также от длительности периода, на который проводится экстраполяция.

Применение указанных способов оценки эффективности мето­дов в каждом конкретном случае требует предварительной их апробации для данного месторождения или района. На основании этой апробации дается оценка точности их применения по диспер­сии фактических и расчетных данных.

Если базовым вариантом разработки служит режим истощения, то экстраполируются фактические показатели текущей добычи нефти во времени (см. рис. 9). При этом добыча нефти до приме­нения метода может аппроксимироваться показательной, гипербо­лической или гармонической функцией. Выбор приемлемой функ­ции, как и в предыдущих случаях, определяется наименьшей дис­персией фактических и расчетных данных.

Добыча нефти за счет применения метода определяется как разница фактических и расчетных показателей для базового ме­тода, полученных экстраполяцией на одинаковый объем добытой жидкости или время.

Применение метода на поздней стадии не исключает как допол­нительный способ оценки эффективности сравнение технологиче­ских показателей опытного и контрольного участков.

Оценка технологического эффекта при применении методов увеличения

нефтеотдачи пластов с начала разработки
К наиболее трудным и неопределенным для оценки технологи­ческого эффекта относятся случаи , когда метод повышения нефте­отдачи пластов применяется с самого начала разработки, как, на­пример, применение ПАВ при разработке месторождений Западной Сибири, применение тепловых методов для разработки Каражанбасского, Усинского и других месторождений.

Сложность этого обусловлена отсутствием возможности срав­нить фактические данные разработки залежи при базовом варианте и данные на опытном участке применения метода. По­этому оценка технологического эффекта от применения метода базируется либо на расчетных показателях разработки опытного участка, либо на фактических результатах разработки другого участка, так называемого контрольного.

В первом случае возможны погрешности, связанные с неточ­ностью исходной информации или методики расчетов. Во втором случае трудность заключается в выборе контрольного участка, который должен быть идентичен опытному как по геолого-физи­ческим свойствам, так и по условиям разработки. Выдержать же идентичность опытного и контрольного участков по всем показа­телям не удается практически никогда. В результате возможна неоднозначность в определении технологического эффекта. А по­скольку этот показатель имеет не только теоретическое, но и прак­тическое значение, у одних специалистов возникает заинтересо­ванность в эффекте, а у других - недоверие к результатам его определения. Это особенно проявляется при испытании методов, характеризующихся незначительным приростом нефтеотдачи пла­стов (таких, как заводнение с ПАВ, серной кислотой) и длитель­ным периодом до начала ощутимого реагирования добывающих скважин на воздействие, особенно в начальный период применения методов.

Для выхода из этого положения есть два пути. Один состоит в том, что неопределенность оценок эффекта можно преодолеть ста­тистически, т. е. большим числом опытных работ и соответствующей их обработкой методами многофакторного анализа. Для этого необходимо тщательно анализировать все результаты опытных ра­бот, сопоставлять лабораторные и промысловые результаты, обоб­щать опыт применения метода на многих участках, накапливать данные для статистической обработки. С течением времени по­явится уверенность в точности определения технологического эф­фекта тех или иных методов увеличения нефтеотдачи пластов. Это верный, но долгий путь.

Другим путем, наиболее достоверным, на наш взгляд, является сопоставление фактических результатов разработки малого по раз­меру опытного участка при строго выдержанной технологии с по­казателями разработки того же участка, полученными на основе адекватной математической модели. После полной адаптации математической модели к фактическим данным опытного участка эффект от применения метода может определяться сравнитель­ным расчетом с базовым вариантом.

При этом сравниваются кри­вые Σ Q н . б= f (τ) и Σ Q н . м = f (τ) или η б = f (τ) и η м = f (τ ) . При необходимости вводятся коррективы на различие темпов разра­ботки или поправки на несоответствие проектных и фактических показателей.

Применение тепловых методов для разработки высоко­вязких нефтей обычно приводит к существенному увеличению нефтеотдачи и текущих дебитов нефти по сравнению с разработ­кой на истощение. В этом случае при определении технологиче­ского эффекта рекомендуется использовать метод так называемых «долевых коэффициентов», представляющих собой отношение при­роста конечной нефтеотдачи к общей нефтеотдаче. Добыча нефти за счет применения метода определяется умножением полной добычи нефти на коэффициент долевого участия метода. Примени­мость метода «долевых коэффициентов» для тепловых методов подтверждена на Кенкиякском и Хоросанском месторождениях.

В тех случаях, когда без применения методов увеличения нефтеотдачи пластов разрабатывать залежи экономически нецеле­сообразно, всю нефть следует считать добытой за счет применения методов. Примером могут служить разработка Ярегского место­рождения нефти очень высокой вязкости, а , на которых без тепловых методов воздействия добыча нефти приктически невозможна.

В случаях незначительных приростов нефтеотдачи пластов в начальный период рекомендуется определять добычу нефти за счет применения метода умножением объема (массы) закачанного реагента на установленную расчетом или опытом удельную добычу нефти, т. е. добычу на единицу объема (массы) израсходованного реагента. Такой метод применяется при оценке эффекта от нагне­тания серной кислоты на Ромашкинском месторождении.

Если метод применяется на месторождении, данные разработки которого хорошо вписываются в имеющиеся корреляционные за­висимости от геолого-физических свойств пласта, то показатели базового варианта в отдельных случаях можно определять по ним.

Содержание:
1.
2.
3.
3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
4.
5.
6.
Введение

Эффективность извлечения нефти из нефтеносных пластов современными, промышленно освоенными методами разработки во всех нефтедобывающих странах на сегодняшний день считается неудовлетворительной, притом что потребление нефтепродуктов во всем мире растет из года в год. Средняя конечная нефтеотдача пластов по различным странам и регионам составляет от 25 до 40%.

Например, в странах Латинской Америки и Юго-Восточной Азии средняя нефтеотдача пластов составляет 24–27%, в Иране – 16–17%, в США, Канаде и Саудовской Аравии – 33–37%, в странах СНГ и России – до 40%, в зависимости от структуры запасов нефти и применяемых методов разработки.

Остаточные или неизвлекаемые промышленно освоенными методами разработки запасы нефти достигают в среднем 55–75% от первоначальных геологических запасов нефти в недрах (Рис. 1 ).

Поэтому актуальными являются задачи применения новых технологий нефтедобычи, позволяющих значительно увеличить нефтеотдачу уже разрабатываемых пластов, на которых традиционными методами извлечь значительные остаточные запасы нефти уже невозможно.

Во всем мире с каждым годом возрастает интерес к методам повышения нефтеотдачи пластов, и развиваются исследования, направленные на поиск научно обоснованного подхода к выбору наиболее эффективных технологий разработки месторождений.

В целях повышения экономической эффективности разработки месторождений, снижения прямых капитальных вложений и максимально возможного использования реинвестиций весь срок разработки месторождения принято делить на три основных этапа.

На первом этапе для добычи нефти максимально возможно используется естественная энергия пласта (упругая энергия, энергия растворенного газа, энергия законтурных вод, газовой шапки, потенциальная энергия гравитационных сил) (Рис. 2).

На втором этапе реализуются методы поддержания пластового давления путем закачки воды или газа. Эти методы принято называть вторичными (Рис. 3 ).

На третьем этапе для повышения эффективности разработки месторождений применяются методы увеличения нефтеотдачи (МУН) (Рис. 4 ).

Распределение остаточной нефтенасыщенности пластов требует, чтобы методы увеличения нефтеотдачи эффективно воздействовали на нефть, рассеянную в заводненных или загазованных зонах пластов, на оставшиеся с высокой текущей нефтенасыщенностью слабопроницаемые слои и пропластки в монолитных заводненных пластах, а также на обособленные линзы и зоны пласта, совсем не охваченные дренированием при существующей системе добычи. Представляется совершенно бесспорным, что при столь широком многообразии состояния остаточных запасов, а также при большом различии свойств нефти, воды, газа и проницаемости нефтенасыщенных зон пластов не может быть одного универсального метода увеличения нефтеотдачи.

Известные методы увеличения нефтеотдачи пластов в основном характеризуются направленным эффектом и воздействуют максимум на одну-две причины, влияющие на состояние остаточных запасов.

По типу рабочих агентов классификация известных методов увеличения нефтеотдачи пластов выглядит следующим образом:

1. Тепловые методы:

Паротепловое воздействие на пласт;
внутрипластовое горение;
вытеснение нефти горячей водой;
пароциклические обработки скважин.

2. Газовые методы:

Закачка воздуха в пласт;
воздействие на пласт углеводородным газом (в том числе ШФЛУ);
воздействие на пласт двуокисью углерода;
воздействие на пласт азотом, дымовыми газами и др.

3. Химические методы:

Вытеснение нефти водными растворами ПАВ (включая пенные системы);
вытеснение нефти растворами полимеров;
вытеснение нефти щелочными растворами;
вытеснение нефти кислотами;
вытеснение нефти композициями химических реагентов (в том числе мицеллярные растворы и др.);
микробиологическое воздействие.

4. Гидродинамические методы:

Интегрированные технологии;
вовлечение в разработку недренируемых запасов;
барьерное заводнение на газонефтяных залежах;
нестационарное (циклическое) заводнение;
форсированный отбор жидкости;
ступенчато-термальное заводнение.

5. Группа комбинированных методов.

С точки зрения воздействия на пластовую систему в большинстве случаев реализуется именно комбинированный принцип воздействия, при котором сочетаются гидродинамический и тепловой методы, гидродинамический и физико-химический методы, тепловой и физико-химический методы и так далее.

6. Методы увеличения дебита скважин.

Отдельно следует сказать о так называемых физических методах увеличения дебита скважин. Объединять их с методами увеличения нефтеотдачи не совсем правильно из-за того, что использование методов увеличения нефтеотдачи характеризуется увеличенным потенциалом вытесняющего агента, а в физических методах потенциал вытесняющего нефть агента реализуется за счет использования естественной энергии пласта. Кроме того, физические методы чаще всего не повышают конечную нефтеотдачу пласта, а лишь приводят к временному увеличению добычи, то есть повышению текущей нефтеотдачи пласта.

К наиболее часто применяемым физическим методам относятся:

Гидроразрыв пласта;
горизонтальные скважины;
электромагнитное воздействие;
волновое воздействие на пласт;
другие аналогичные методы.

Тепловые МУН – это методы интенсификации притока нефти и повышения продуктивности эксплуатационных скважин, основанные на искусственном увеличении температуры в их стволе и призабойной зоне. Применяются тепловые МУН в основном при добыче высоковязких парафинистых и смолистых нефтей (Р ис. 5 ). Прогрев приводит к разжижению нефти, расплавлению парафина и смолистых веществ, осевших в процессе эксплуатации скважин на стенках, подъемных трубах и в призабойной зоне.

Паротепловое воздействие на пласт. Вытеснение нефти паром – метод увеличения нефтеотдачи пластов, наиболее распространенный при вытеснении высоковязких нефтей. В этом процессе пар нагнетают с поверхности в пласты с низкой температурой и высокой вязкостью нефти через специальные паронагнетательные скважины, расположенные внутри контура нефтеносности. Пар, обладающий большой теплоемкостью, вносит в пласт значительное количество тепловой энергии, которая расходуется на нагрев пласта и снижение относительной проницаемости, вязкости и расширение всех насыщающих пласт агентов – нефти, воды, газа. В пласте образуются следующие три зоны, различающиеся по температуре, степени и характеру насыщения:

1) Зона пара вокруг нагнетательной скважины с температурой, изменяющейся от температуры пара до температуры начала конденсации (400–200°С), в которой происходят экстракция из нефти легких фракций (дистилляция нефти) и перенос (вытеснение) их паром по пласту, то есть совместная фильтрация пара и легких фракций нефти.
2) Зона горячего конденсата, в которой температура изменяется от температуры начала конденсации (200°С) до пластовой, а горячий конденсат (вода) в неизотермических условиях вытесняет легкие фракции и нефть.
3) Зона с начальной пластовой температурой, не охваченная тепловым воздействием, в которой происходит вытеснение нефти пластовой водой.

При нагреве пласта происходит дистилляция нефти, снижение вязкости и объемное расширение всех пластовых агентов, изменение фазовых проницаемостей, смачиваемости горной породы и подвижности нефти, воды и др.

Внутрипластовое горение. Метод извлечения нефти с помощью внутрипластового горения основан на способности углеводородов (нефти) в пласте вступать с кислородом воздуха в окислительную реакцию, сопровождающуюся выделением большого количества теплоты. Он отличается от горения на поверхности. Генерирование теплоты непосредственно в пласте – основное преимущество данного метода (Р ис. 5 ).

Процесс горения нефти в пласте начинается вблизи забоя нагнетательной скважины, обычно нагревом и нагнетанием воздуха. Теплоту, которую необходимо подводить в пласт для начала горения, получают при помощи забойного электронагревателя, газовой горелки или окислительных реакций.

После создания очага горения у забоя скважин непрерывное нагнетание воздуха в пласт и отвод от очага (фронта) продуктов горения (N 2 , CO 2 , и др.) обеспечивают поддержание процесса внутрипластового горения и перемещение по пласту фронта вытеснения нефти.

В качестве топлива для горения расходуется часть нефти, оставшаяся в пласте после вытеснения ее газами горения, водяным паром, водой и испарившимися фракциями нефти впереди фронта горения. В результате сгорают наиболее тяжелые фракции нефти.

В случае обычного (сухого) внутрипластового горения , осуществленного нагнетанием в пласт только воздуха, вследствие его низкой теплоемкости по сравнению с породой пласта происходит отставание фронта нагревания породы от перемещающегося фронта горения. В результате этого основная доля генерируемой в пласте теплоты (до 80% и более) остается позади фронта горения, практически не используется и в значительной мере рассеивается в окружающие породы. Эта теплота оказывает некоторое положительное влияние на процесс последующего вытеснения нефти водой из неохваченных горением смежных частей пласта. Очевидно, однако, что использование основной массы теплоты в области впереди фронта горения, то есть приближение генерируемой в пласте теплоты к фронту вытеснения нефти, существенно повышает эффективность процесса.

Перемещение теплоты из области перед фронтом горения в область за фронтом горения возможно за счет улучшения теплопереноса в пласте добавлением к нагнетаемому воздуху агента с более высокой теплоемкостью – например, воды. В последние годы в мировой практике все большее применение получает метод влажного горения.

Процесс влажного внутрипластового горения заключается в том, что в пласт вместе с воздухом закачивается в определенных количествах вода, которая, соприкасаясь с нагретой движущимся фронтом горения породой, испаряется. Увлекаемый потоком газа пар переносит теплоту в область впереди фронта горения, где вследствие этого развиваются обширные зоны прогрева, выраженные в основном зонами насыщенного пара и сконденсированной горячей воды.

Пароциклические обработки скважин. Циклическое нагнетание пара в пласты, или пароциклические обработки добывающих скважин, осуществляют периодическим прямым нагнетанием пара в нефтяной пласт через добывающие скважины, некоторой выдержкой их в закрытом состоянии и последующей эксплуатацией тех же скважин для отбора из пласта нефти с пониженной вязкостью и сконденсированного пара. Цель этой технологии заключается в том, чтобы прогреть пласт и нефть в призабойных зонах добывающих скважин, снизить вязкость нефти, повысить давление, облегчить условия фильтрации и увеличить приток нефти к скважинам.

Механизм процессов, происходящих в пласте, довольно сложный и сопровождается теми же явлениями, что и вытеснение нефти паром, но дополнительно происходит противоточная капиллярная фильтрация, перераспределение в микронеоднородной среде нефти и воды (конденсата) во время выдержки без отбора жидкости из скважин. При нагнетании пара в пласт он, естественно, внедряется в наиболее проницаемые слои и крупные поры пласта. Во время выдержки в прогретой зоне пласта происходит активное перераспределение насыщенности за счет капиллярных сил: горячий конденсат вытесняет, замещает маловязкую нефть из мелких пор и слабопроницаемых линз (слоев) в крупные поры и высокопроницаемые слои, то есть меняется с ней местами.

Именно такое перераспределение насыщенности пласта нефтью и конденсатом и является физической основой процесса извлечения нефти при помощи пароциклического воздействия на пласты. Без капиллярного обмена нефтью и конденсатом эффект от пароциклического воздействия был бы минимальным и исчерпывался бы за первый цикл.

3.2. Газовые МУН

Закачка воздуха в пласт. Метод основан на закачке воздуха в пласт и его трансформации в эффективные вытесняющие агенты за счет низкотемпературных внутрипластовых окислительных процессов. В результате низкотемпературного окисления непосредственно в пласте вырабатывается высокоэффективный газовый агент, содержащий азот углекислый газ и ШФЛУ (широкие фракции легких углеводородов) (Рис. 6 ).

К преимуществам метода можно отнести:

– использование недорого агента – воздуха;
– использование природной энергетики пласта – повышенной пластовой температуры (свыше 60–70 o С) для самопроизвольного инициирования внутрипластовых окислительных процессов и формирования высокоэффективного вытесняющего агента.

Быстрое инициирование активных внутрипластовых окислительных процессов является одним из важнейших следствий использования энергетики пласта для организации закачки воздуха на месторождениях легкой нефти. Интенсивность окислительных реакций довольно быстро возрастает с увеличением температуры.

Воздействие на пласт двуокисью углерода. Двуокись углерода растворяется в воде гораздо лучше углеводородных газов. Растворимость двуокиси углерода в воде увеличивается с повышением давления и уменьшается с повышением температуры.

При растворении в воде двуокиси углерода вязкость ее несколько увеличивается. Однако это увеличение незначительно. При массовом содержании в воде 3–5% двуокиси углерода вязкость ее увеличивается лишь на 20–30%. Образующаяся при растворении СО 2 в воде угольная кислота Н 2 CO 3 растворяет некоторые виды цемента и породы пласта и повышает проницаемость. В присутствии двуокиси углерода снижается набухаемость глиняных частиц. Двуокись углерода растворяется в нефти в четыре-десять раз лучше, чем в воде, поэтому она может переходить из водного раствора в нефть. Во время перехода межфазное натяжение между ними становится очень низким, и вытеснение приближается к смешивающемуся.

Двуокись углерода в воде способствует отмыву пленочной нефти, покрывающей зерна и породы, и уменьшает возможность разрыва водной пленки. Вследствие этого капли нефти при малом межфазном натяжении свободно перемещаются в поровых каналах и фазовая проницаемость нефти увеличивается.

При растворении в нефти СО 2 вязкость нефти уменьшается, плотность повышается, а объем значительно увеличивается: нефть как бы набухает.

Увеличение объема нефти в 1,5–1,7 раза при растворении в ней СО 2 вносит особенно большой вклад в повышение нефтеотдачи пластов при разработке месторождений, содержащих маловязкие нефти. При вытеснении высоковязких нефтей основной фактор, увеличивающий коэффициент вытеснения, – уменьшение вязкости нефти при растворении в ней CO 2 . Вязкость нефти снижается тем сильнее, чем больше ее начальное значение.

При пластовом давлении выше давления полного смешивания пластовой нефти с CO 2 двуокись углерода будет вытеснять нефть, как обычный растворитель (смешивающее вытеснение). Тогда в пласте образуются три зоны: зона первоначальной пластовой нефти, переходная зона (от свойств первоначальной нефти до свойств закачиваемого агента) и зона чистого СО 2 . Если СО 2 нагнетается в заводненную залежь, то перед зоной СО 2 формируется вал нефти, вытесняющий пластовую воду.

Увеличение объема нефти под воздействием растворяющегося в нем СО 2 наряду с изменением вязкости жидкостей (уменьшением вязкости нефти и увеличением вязкости воды) – один из основных факторов, определяющих эффективность его применения в процессах добычи нефти и извлечения ее из заводненных пластов.

Воздействие на пласт азотом, дымовыми газами и др . Метод основан на горении твердых порохов в жидкости без каких-либо герметичных камер или защитных оболочек. Он сочетает тепловое воздействие с механическим и химическим, а именно:

а) образующиеся газы горения под давлением (до 100 МПа) вытесняют из ствола в пласт жидкость, которая расширяет естественные и создает новые трещины;
б) нагретые (180–250°С) пороховые газы, проникая в пласт, расплавляют парафин, смолы и асфальтены;
в) газообразные продукты горения состоят в основном из хлористого водорода и углекислого газа; хлористый водород при наличии воды образует слабоконцентрированный солянокислотный раствор. Углекислый газ, растворяясь в нефти, снижает ее вязкость, поверхностное натяжение и увеличивает продуктивность скважины.

3.3. Химические МУН

Химические МУН применяются для дополнительного извлечения нефти из сильно истощенных, заводненных нефтеносных пластов с рассеянной, нерегулярной нефтенасыщенностью.

Объектами применения являются залежи с низкой вязкостью нефти (не более 10 мПа*с), низкой соленостью воды, продуктивные пласты представлены карбонатными коллекторами с низкой проницаемостью (Рис. 7 ).

Вытеснение нефти водными растворами ПАВ. Заводнение водными растворами поверхностно-активных веществ (ПАВ) направлено на снижение поверхностного натяжения на границе «нефть – вода», увеличение подвижности нефти и улучшение вытеснения ее водой. За счет улучшения смачиваемости породы водой она впитывается в поры, занятые нефтью, равномернее движется по пласту и лучше вытесняет нефть.

Вытеснение нефти растворами полимеров. Полимерное заводнение заключается в том, что в воде растворяется высокомолекулярный химический реагент – полимер (полиакриламид), обладающий способностью даже при малых концентрациях существенно повышать вязкость воды, снижать ее подвижность и за счет этого повышать охват пластов заводнением.

Основное и самое простое свойство полимеров заключается в загущении воды. Это приводит к такому же уменьшению соотношения вязкостей нефти и воды в пласте и сокращению условий прорыва воды, обусловленных различием вязкостей или неоднородностью пласта.

Кроме того, полимерные растворы, обладая повышенной вязкостью, лучше вытесняют не только нефть, но и связанную пластовую воду из пористой среды. Поэтому они вступают во взаимодействие со скелетом пористой среды, то есть породой и цементирующим веществом. Это вызывает адсорбцию молекул полимеров, которые выпадают из раствора на поверхность пористой среды и перекрывают каналы или ухудшают фильтрацию в них воды. Полимерный раствор предпочтительно поступает в высокопроницаемые слои, и за счет этих двух эффектов – повышения вязкости раствора и снижения проводимости среды – происходит существенное уменьшение динамической неоднородности потоков жидкости и, как следствие, повышение охвата пластов заводнением.


Вытеснение нефти щелочными растворами. Метод щелочного заводнения нефтяных пластов основан на взаимодействии щелочей с пластовыми нефтью и породой. При контакте щелочи с нефтью происходит ее взаимодействие с органическими кислотами, в результате чего образуются поверхностно-активные вещества, снижающие межфазное натяжение на границе раздела фаз «нефть – раствор щелочи» и увеличивающие смачиваемость породы водой. Применение растворов щелочей – один из самых эффективных способов уменьшения контактного угла смачивания породы водой, то есть гидрофилизации пористой среды, что приводит к повышению коэффициента вытеснения нефти водой.

Вытеснение нефти композициями химических реагентов (в том числе мицеллярные растворы). Мицеллярные растворы представляют собой прозрачные и полупрозрачные жидкости. Они в основном однородные и устойчивые к фазовому разделению, в то время как эмульсии нефти в воде или воды в нефти не являются прозрачными, разнородны по строению глобул и обладают фазовой неустойчивостью.

Механизм вытеснения нефти мицеллярными растворами определяется их физико-химическими свойствами. В силу того что межфазное натяжение между раствором и пластовыми жидкостями (нефтью и водой) очень низкое, раствор, устраняя действие капиллярных сил, вытесняет нефть и воду. При рассеянной остаточной нефтенасыщенности заводненной пористой среды перед фронтом вытеснения мицеллярным раствором разрозненные глобулы нефти сливаются в непрерывную фазу, накапливается вал нефти – зона повышенной нефтенасыщенности, а за ней – зона повышенной водонасыщенности.

Нефтяной вал вытесняет (собирает) только нефть, пропуская через себя воду. В зоне нефтяного вала скорость фильтрации нефти больше скорости фильтрации воды. Мицеллярный раствор, следующий за водяным валом, увлекает отставшую от нефтяного вала нефть и вытесняет воду с полнотой, зависящей от межфазного натяжения на контакте с водой. Такой механизм процессов фильтрации жидкости наблюдается во время вытеснения остаточной (неподвижной) нефти из заводненной однородной пористой среды.

Микробиологическое воздействие – это технологии, основанные на биологических процессах, в которых используются микробные объекты. В течение процесса закачанные в пласт микроорганизмы метаболизируют углеводороды нефти и выделяют полезные продукты жизнедеятельности:

Спирты, растворители и слабые кислоты, которые приводят к уменьшению вязкости, понижению температуры текучести нефти, а также удаляют парафины и включения тяжелой нефти из пористых пород, увеличивая проницаемость последних;
биополимеры, которые, растворяясь в воде, повышают ее плотность, облегчают извлечение нефти при использовании технологии заводнения;
биологические поверхностно-активные вещества, которые делают поверхность нефти более скользкой, уменьшая трение о породы;
газы, которые увеличивают давление внутри пласта и помогают подвигать нефть к стволу скважины.

3.4. Гидродинамические МУН

Гидродинамические методы при заводнении позволяют интенсифицировать текущую добычу нефти, увеличивать степень извлечения нефти, а также уменьшать объемы прокачиваемой через пласты воды и снижать текущую обводненность добываемой жидкости (Рис. 8 ).


Первая группа попеременно работающих скважин Вторая группа попеременно работающих скважин
Рис. 8 . Регулирование отборов гидродинамическими методами

Интегрированные технологии. Интегрированные технологии выделяются в отдельную группу и не относятся к обычному заводнению водой с целью поддержания пластового давления. Эти методы направлены на выборочную интенсификацию добычи нефти.

Прирост добычи достигается путем организации вертикальных перетоков в слоисто-неоднородном пласте через малопроницаемые перемычки из низкопроницаемых слоев в высокопроницаемые на основе специального режима нестационарного воздействия (Рис. 9 ).


Барьерное заводнение на газонефтяных залежах. Эксплуатация газонефтяных месторождений осложняется возможными прорывами газа к забоям добывающих скважин, что вследствие высокого газового фактора значительно усложняет их эксплуатацию. Суть барьерного заводнения состоит в том, что нагнетательные скважины располагают в зоне газонефтяного контакта. Закачку воды и отборы газа и нефти регулируют таким образом, чтобы исключить взаимные перетоки нефти в газовую часть залежи, а газа – в нефтяную часть.

Нестационарное (циклическое) заводнение. Суть метода циклического воздействия и изменения направления потоков жидкости заключается в том, что в пластах, обладающих неоднородностью по размерам пор, проницаемости слоев, пропластков, зон, участков и неравномерной их нефтенасыщенностью (заводненностью), вызванной этими видами неоднородности, а также отбором нефти и нагнетанием воды через дискретные точки – скважины, искусственно создается нестационарное давление. Оно достигается изменением объемов нагнетания воды в скважины или отбора жидкости из скважин в определенном порядке путем их периодического повышения или снижения.

В результате такого нестационарного, изменяющегося во времени воздействия на пласты в них периодически проходят волны повышения и понижения давления. Слои, зоны и участки малой проницаемости, насыщенные нефтью, располагаются в пластах бессистемно, обладают низкой пьезопроводностью, а скорости распространения давления в них значительно ниже, чем в высокопроницаемых насыщенных слоях, зонах, участках. Поэтому между нефтенасыщенными и заводненными зонами возникают различные по знаку перепады давления. При повышении давления в пласте, то есть при увеличении объема нагнетания воды или снижения отбора жидкости, возникают положительные перепады давления: в заводненных зонах давление выше, а в нефтенасыщенных – ниже.

При снижении давления в пласте, то есть при уменьшении объема нагнетаемой воды или повышении отбора жидкости, возникают отрицательные перепады давления: в нефтенасыщенных зонах давление выше, а в заводненных – ниже. Под действием знакопеременных перепадов давления происходит перераспределение жидкостей в неравномерно насыщенном пласте.

Форсированный отбор жидкости применяется на поздней стадии разработки, когда обводненность достигает более 75%. При этом нефтеотдача возрастает вследствие увеличения градиента давления и скорости фильтрации. При этом методе вовлекаются в разработку участки пласта, не охваченные заводнением, а также отрыв пленочной нефти с поверхности породы.

Гидравлический разрыв пласта. При гидравлическом разрыве пласта (ГРП) происходит создание трещин в горных породах, прилегающих к скважине, за счет давления на забое скважины в результате закачки в породы вязкой жидкости. При ГРП в скважину закачивается вязкая жидкость с таким расходом, который обеспечивает создание на забое скважины давления, достаточного для образования трещин (Рис. 10 ).

Трещины, образующиеся при ГРП, имеют вертикальную и горизонтальную ориентацию. Протяженность трещин достигает нескольких десятков метров, ширина – от нескольких миллиметров до сантиметров. После образования трещин в скважину закачивают смесь вязкой жидкости с твердыми частичками – для предотвращения смыкания трещин под действием горного давления. ГРП проводится в низкопроницаемых пластах, где отдельные зоны и пропластки не вовлекаются в активную разработку, что снижает нефтеотдачу объекта в целом. При проведении ГРП создаваемые трещины, пересекая слабодренируемые зоны и пропластки, обеспечивают их выработку, нефть фильтруется из пласта в трещину гидроразрыва и по трещине к скважине, тем самым увеличивая нефтеотдачу.

Горизонтальные скважины. Технология повышения нефтеотдачи пластов методом строительства горизонтальных скважин зарекомендовала себя в связи с увеличением количества нерентабельных скважин с малодебитной или обводненной продукцией и бездействующих аварийных скважин по мере перехода к более поздним стадиям разработки месторождений, когда обводнение продукции или падение пластовых давлений на многих разрабатываемых участках (особенно в литологически неоднородных зонах нефтеносных пластов с трудноизвлекаемыми запасами) опережает выработку запасов при существующей плотности сетки скважин. Увеличение нефтеотдачи происходит за счет обеспечения большей площади контакта продуктивного пласта со стволом скважины.

Электромагнитное воздействие. Метод основан на использовании внутренних источников тепла, возникающих при воздействии на пласт высокочастотного электромагнитного поля. Зона воздействия определяется способом создания (в одной скважине или между несколькими), напряжения и частоты электромагнитного поля, а также электрическими свойствами пласта. Помимо тепловых эффектов электромагнитное воздействие приводит к деэмульсации нефти, снижению температуры начала кристаллизации парафина и появлению дополнительных градиентов давления за счет силового воздействия электромагнитного поля на пластовую жидкость.

Волновое воздействие на пласт. Известно множество способов волнового и термоволнового (вибрационного, ударного, импульсного, термоакустического) воздействия на нефтяной пласт или на его призабойную зону.

Основная цель технологии – ввести в разработку низкопроницаемые изолированные зоны продуктивного пласта, слабо реагирующие на воздействие системы ППД, путем воздействия на них упругими волнами, затухающими в высокопроницаемых участках пласта, но распространяющимися на значительное расстояние и с достаточной интенсивностью, чтобы возбуждать низкопроницаемые участки пласта.

Рис.10. Схема проведения ГРП

Применением таких методов можно достичь заметной интенсификации фильтрационных процессов в пластах и повышения их нефтеотдачи в широком диапазоне амплитудно-частотной характеристики режимов воздействия.

При этом положительный эффект волнового воздействия обнаруживается как в непосредственно обрабатываемой скважине, так и в отдельных случаях, при соответствующих режимах обработки проявляется в скважинах, отстоящих от источника импульсов давления на сотни и более метров.

То есть при волновой обработке пластов принципиально можно реализовать механизмы как локального, так и дальнего площадного воздействия.

Все вышеперечисленные методы характеризуются различной потенциальной возможностью увеличения нефтеотдачи пластов.

Так по России КИН тепловых методов составляет 15–30%, газовых методов – 5–15%, химических методов – 25–35%, физических методов – 9–12%, гидродинамических методов – 7–15% (Рис. 11 ).

Компания «Петрос» имеет большой опыт применения методов увеличения нефтеотдачи и располагает более 20 технологий МУН.

С 1991 года компанией были успешно реализованы многочисленные проекты по увеличению нефтеотдачи на месторождениях России, США, Украины, Узбекистана.

Заказчиками в указанных проектах являются крупнейшие нефтегазодобывающие компании в России и за рубежом: ОАО «Роснефть», ОАО «Лукойл», ОАО «ТНК-ВР», ОАО «Татнефть», ОАО «Газпромнефть», ОАО «Сургутнефтегаз», ОАО «ВНИИнефть», JSC «Pertamina», JSC «Vietsovpetro».

4. Эффективность применения МУН

Согласно обобщенным данным при применении современных методов увеличения нефтеотдачи, КИН составляет 30–70%, в то время как при первичных способах разработки (с использованием потенциала пластовой энергии) – в среднем не выше 20–25%, а при вторичных способах (заводнении и закачке газа для поддержания пластовой энергии) – 25–35%. МУН позволяют нарастить мировые извлекаемые запасы нефти в 1,4 раза, то есть до 65 млрд. тонн. Среднее значение указанного коэффициента к 2020 году благодаря им увеличится с 35% до 50% с перспективой дальнейшего роста. Если в 1986 году добыча нефти за счет МУН составляла в мире около 77 млн. тонн, то в настоящее время она увеличилась до 110 млн. тонн. Всего, по данным Oil and Gas Journal, к 2006 году в мире, за исключением стран СНГ, реализовывался 301 проект по внедрению МУН. Отметим также, что, по оценкам специалистов, использование современных методов увеличения нефтеотдачи приводит к существенному увеличению КИН. А повышение КИН, например, лишь на 1% в целом по России позволит добывать дополнительно до 30 млн. тонн в год.

Таким образом мировой опыт свидетельствует, что востребованность современных МУН растет, их потенциал в увеличении извлекаемых запасов внушителен. Этому способствует и то обстоятельство, что себестоимость добычи нефти с применением современных МУН по мере их освоения и совершенствования непрерывно снижается и становится вполне сопоставимой с себестоимостью добычи нефти традиционными промышленно освоенными методами.

5. Опыт применения МУН в мире

Мировое потребление нефти постоянно увеличивается: за последние 20 лет средний рост составил 1,45% в год. Несмотря на то, что были годы, когда добыча нефти падала, общая тенденция увеличения добычи сохраняется.

Добыча нефти в мире за февраль 2010 года
Таблица 1

Страны

США

Канада

Южная Америка

Африка

Ближний Восток

Западная Европа

Восточная Европа и страны бывшего СССР

Россия

Азия / Тихий океан

Индонезия

Добыча нефти,

тыс. баррель

870

Добыча нефти за счет МУН в 2008 году
Таблица 2

Страны /

МУН, %

Америка

Африка

Азия / Тихий океан

Европа

Ближний Восток

Россия

тепловые

26 34 16 20 22 22

химические

10 17 22 21 11 30

газовые

41 25 29 14 15 8

гидродинамические

13 13 8 17 6 12

физические

17 11 21 32 31 12

Список литературы

  1. Сургучев М.Л. «Вторичные и третичные методы увеличения нефтеотдачи».
  2. Амелин И.Д., Сургучев М.Л., Давыдов А.В. «Прогноз разработки нефтяных залежей на поздней стадии».
  3. Шелепов В.В. «Состояние сырьевой базы нефтяной промышленности России Повышение нефтеотдачи пластов».
  4. Степанова Г.С. «Газовые и водогазовые методы воздействия на нефтяные пласты».
  5. Сургучев М.Л., Желтов Ю.В., Симкин Э.М. «Физико-химические микропроцессы в нефтегазоносных пластах».
  6. Климов А.А. «Методы повышения нефтеотдачи пластов».
  7. Журнал «Oil&Gas Journal», июнь 2010.
  8. Журнал «Нефтяное хозяйство», январь 2008.

Обзор составлен НИК Петрос © 2010

Опыт показывает, что с увеличением концентрации полимера в растворе фазовая проницаемость пористой среды для смачивающей фазы уменьшается, а проницаемость для углеводородной жидкости при одной и той же насыщенности возрастает (при концентрациях полимера до 0,05 %). По данным лабораторных опытов, нефтеотдача может возрастать при вытеснении нефти полимерными растворами на 15-20% (данные получены на линейных моделях с однородными пористыми средами.

На практике для экономии полимера целесообразно закачивать в пласт оторочку загущенной полимеров воды и далее продвигать ее по пласту обычной водой. Чтобы оторочка не полностью размылась до подхода к эксплуатационным скважинам, объем ее должен быть подобран с учетом неоднородности пласта, соотношения i 0 вязкостей нефти и раствора полимера.

4.3. Применение углекислого газа

Углекислый газ, растворенный в воде или введенный в пласт в жидком виде, благоприятно воздействует на физико-химические свойства нефти, воды и способствует увеличению нефтеотдачи пластов. При этом улучшаются и фильтрационные свойства пластовой системы.

СО 2 - бесцветный газ тяжелее воздyxa(относительная плотность 1,529). Критическая температура 31,05 °С; критическое давление - 7,38 МПа, критическая плотность - 468 кг/м 3 . При температуре 20 °С под давлением 5,85 Мпа превращается в бесцветную жидкость с плотностью 770 кг/м 3 . При сильном охлаждении СО 2 застывает в белую снегообразную массу с плотностью 1,65 г/см 3 , которая возгоняется при температуре - 78,5 °С (при атмосферном давлении).

Таблица 2 Свойства углекислого газа в точках росы

Температура °С Давление р, Мпа Плотность р, кг."м 3 Коэф-фициент летучести V
жидкостисти газа
20 5,73 778 193 0,178
21 5,86 767 202 0,174
22 6,0 755 211 0,170
23 6,14 742 221 0,167
24 6,29 729 231 0,163
25 6,44 714 242 0,160
26 6,58 697 256 0,156
27 6,74 679 272 0,152
28 6,89 657 291 0,148
29 7,05 630 312 0,145
30 7,21 593 340 0,142
31,0 7,38 468 358 0,139
31,05 Критическая температура

В табл. 2 приведены данные, характеризующие свойства углекислого газа в точке росы (начало конденсации).

Растворимость СО 2 в воде с увеличением давления возрастает. Массовая доля его не превышает 6 %. С повышением температуры до 80 °С и минерализации воды растворимость СО 2 уменьшается. С увеличением концентрации двуокиси углерода вязкость воды возрастает. Растворимость углекислого газа в нефтях является функцией давления, температуры, молекулярной массы и состава нефти. С уменьшением молекулярной массы углеводородов растворимость СОэ в них возрастает. С очень легкими нефтями СОг смешивается полностью при давлениях 5,6 - 7 МПа. Тяжелые нефти в жидкой двуокиси углерода растворяются не полностью - нерастворимый остаток состоит из тяжелых углеводородов (смол, твердых парафинов и т. д.). С увеличением соотношения объема жидкой углекислоты к объему нефти в смеси растворимость нефти возрастает.

Для характеристики состава и свойств нефти часто используется эмпирический параметр, впервые введенный Ватсоном, который называется характеристическим фактором. Он зависит от содержания в нефти углеводородов различного группового состава. Характеристический фактор для парафиновых нефтей уменьшается с увеличением в них нафтеновых углеводородов. Его значение еще меньше для иефтей, содержащих значительные количества ароматических углеводородов.

Для увеличения нефтеотдачи пластов углекислый газ в качестве вытесняющей нефть оторочки нагнетается в сжиженном виде в пористую среду и затем проталкивается карбонизированной водой.) По результатам лабораторных исследований при объеме оторочки жидкой углекислоты, равном 4-5 % от объема пор обрабатываемого участка, нефтеотдача возрастает более чем на 50 % по сравнению с нефтеотдачей при обычном заводнении. Углекислый газ - эффективное средство увеличения нефтеотдачи как карбонатных коллекторов, так и песчаников, в которых пластовое давление составляет 5,6 МПа и более, а температура изменяется в пределах 24-71 °С.

Значительные количества необходимого углекислого газа можно получить путем улавливания его из дымовых и других газов. Углекислый газ является побочным продуктом ряда химических производств. Встречаются в природе также залежи углекислого газа с примесями других газов.

В заключение следует отметить, что углекислый газ в нефтепромысловом деле применяется также для охлаждения забоев скважин (используется СО 2 в твердом, виде) с целью повышения эффективности кислотных обработок. Холодная соляная кислота способна проникать в карбонатный пласт в удаленные от забоя скважин зоны, сохраняя свою активность. Кроме того, само добавление СО 2 в соляную кислоту также улучшает результаты обработок скважин вследствие замедления скорости реакции.

4.4 Мицелярные растворы

Как известно, (нефть и вода при обычных условиях в коллекторах не смешиваются. Образующиеся на контактах нефти и воды в пористых средах границы раздела приводят к возникновению многочисленных капиллярных эффектов, отрицательно влияющих на процесс фильтрации нефти и воды. Например, как было показано в предыдущих разделах, фильтрация в пористых средах многофазных систем (смесей нефти, воды и газа) приводит к повышенным сопротивлениям. Процесс вытеснения нефти водой может быть приближен к условиям фильтрации однородных систем без ощутимого влияния на движение флюидов многочисленных границ раздела, если между нефтью и водой поместить оторочку мицеллярного раствора (смеси углеводородных жидкостей, воды и поверхностно-активных веществ, растворимых в углеводородах, и стабилизаторов). В качестве стабилизаторов обычно используются спирты (изопропиловый, бутиловый и др.) J Углеводородную часть мицеллярного раствора может составить легкая нефть фракции С 5 +.

Нефтерастворимыми поверхностно-активными веществами (ПАВ) являются нефтяные сульфонаты, алкиларилсульфонаты, алкилфенолы. При содержании в системе поверхностно-активных веществ концентрации выше критической концентрации мицеллообразования ПАВ находится в растворе в виде сгустков (мицелл), которые способны поглощать жидкости, составляющие их внутреннюю фазу. При значительной концентрации ПАВ последние в процессе перемешивания вместе с нефтью и водой образуют нефтеводяные агрегаты - мицеллы, строение которых зависит от количественного состава компонентов и их свойств. На рис. приведены схемы строения мицелл с водяной и нефтяной основой. У мицеллы с водяной основой внешней фазой является нефть. Молекулы ПАВ полярной частью (кружочки на рис. 8 обращены к воде, а углеводородными цепями - к нефти. Несмотря на содержание в таком мицеллярном растворе до 95 % воды, он хорошо смешивается с нефтью, ибо внешней фазой даже при большой концентрации воды в системе оказывается нефть).

Мицеллярные растворы способны растворять жидкости, составляющие их внутреннюю основу (ядро). При этом размеры мицелл возрастают и в некоторый момент наступает обращение фаз - вместо внешней фазы оказывается вода и наоборот.

Внешне мицеллярные растворы представляют собой однородные прозрачные или полупрозрачные жидкости (размеры мицелл 10 5 -10 6 мм). Считается, что по реологическим свойствам они относятся к ньютоновским жидкостям.

Вязкость мицеллярных растворов с нефтяной внешней фазой вначале возрастает с увеличением содержания воды в системе и может достигать 100 мПа-с при водосодержании до 40-45 %. Дальнейшее увеличение концентрации воды (если она сопровождается инверсией типа раствора) приводит к снижению вязкости.

В зависимости от состава и свойств компонентов мицеллярных растворов закономерности изменения вязкости от водосодержания могут быть другими. Соли, присутствующие в воде, снижают вязкость растворов. Это свойство используется для регулирования их вязкости. Состав солей влияет на устойчивость мицеллярных растворов, что должно быть учтено при выборе ПАВ и других их составляющих. Мицеллярные растворы устойчивы только при определенных концентрациях солей.

Упомянутые свойства мицеллярных растворов способствуют при их нагнетании в пласт значительному повышению эффективности вытеснения нефти из коллектора. На практике оторочки мицеллярных растворов продвигаются по пласту водой, загущенной полимерами и водой. Минимальный объем оторочек для однородных пористых сред составляет 4-5 % от объема пор обрабатываемого участка.

По лабораторным данным, мицеллярные растворы способны вытеснять до 50-60 % нефти, оставшейся в пласте после обычного его заводнения. Благоприятные результаты получены даже при водонасыщенности пород до применения мицеллярных растворов, достигающей 70 % от объема пор. Недостаток этих растворов - их чрезвычайная дороговизна из-за большого расхода ПАВ и других его компонентов. Для получения необходимых свойств мицеллярных растворов доля ПАВ в системе как минимум должна быть 9-15%, спирта 4-5%.

4.5 Термические способы нефтеотдачи пластов

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

ИСТОЧНИКИ ПЛАСТОВОЙ ЭНЕРГИИ

Приток жидкости и газа из пласта в скважины происходит под действием сил, на природу и величину которых влияют виды и запасы пластовой энергии. В зависимости от геологического строения района и залежи приток нефти, воды и газа к скважинам обусловливается:

1)напором краевых вод;

2)напором газа, сжатого в газовой шапке;

3)энергией газа, растворенного в нефти и в воде и выделяющегося из них при снижении давления;

4) упругостью сжатых пород;

5) гравитационной энергией.

В зависимости от вида преимущественно проявляющейся энергии вводят понятия режимов работы залежи: водонапорный, режим газовой шапки (газонапорный), растворенного газа, упругий или упруговодонапорный, гравитационный и смешанный.

Водонапорный режим газовых месторождений, так же как и нефтяных залежей, возникает при наличии активных краевых вод или при искусственном заводнении пласта. Газовый режим залежи (или режим расширяющегося газа) возникает при условии, когда единственным источником является энергия сжатого газа, т. е. когда пластовые воды не активны.

Запасы пластовой энергии расходуются на преодоление сил вязкого трения при перемещении жидкостей и газов к забоям скважин, на преодоление капиллярных и адгезионных сил.

СИЛЫ, ДЕЙСТВУЮЩИЕ В ЗАЛЕЖИ

Гидравлические сопротивления во время движения жидкости в пористой среде пропорциональны скорости потока и вязкости жидкостей. Эти сопротивления аналогичны сопротивлению трения при движении жидкости в трубах. Но в отличие от движения жидкости в трубах характер ее течения в микронеоднородной пористой среде имеет свои особенности. По результатам наблюдений за движением воды и нефти в пористой среде установлено, что в области водонефтяного контакта вместо раздельного фронтового движения фаз перемещается смесь воды и нефти. Жидкости в капиллярных каналах разбиваются на столбики и шарики, которые на время закупоривают поры пласта вследствие проявления капиллярных сил. Подобное образование смеси наблюдалось и в единичных капиллярах.

Чтобы представить механизм проявления капиллярных сил при движении водонефтяной смеси, остающейся позади водонефтяного контакта, рассмотрим условия перемещения столбика нефти в цилиндрическом капилляре, заполненном и смоченном водой (рис. 6.1).

Рис. 6.1. Схема деформации капли нефти при её сдвиге в капилляре.

Под действием капиллярных сил столбик нефти будет стремиться принять шарообразную форму, оказывая при это давление Р на пленку воды между стенками капилляра и столбиком нефти:

(6.1)

где - поверхностное натяжение на границе нефть-вода;

R - радиус сферической поверхности столбика нефти;

г - радиус ее цилиндрической поверхности.

Под действием давления, развиваемого менисками, происходит отток жидкости из слоя, отделяющего столбик нефти от стенок капилляра, продолжающийся до тех пор, пока пленка не достигнет равновесного состояния. Эти пленки обладают аномальными свойствами, в частности повышенной вязкостью, и поэтому они неподвижны. Следовательно, с началом движения столбика нефти в капилляре возникнет сила трения, обусловленная давлением нефти на стенки капилляра. Кроме того, прежде чем столбик нефти сдвинется с места, мениски на границах фаз деформируются и займут положение, изображенное пунктирными линиями.

Разность давлений, созданных менисками, будет создавать силу, противодействующую внешнему перепаду давлений:

(6.2)л

Описанное явление, сопровождающееся действием дополнительных сопротивлений при движении пузырьков газа и несмешивающихся жидкостей в капиллярных каналах, впервые исследовано Жаменом и названо его именем. Многочисленные эффекты Жамена возникают также при движении газоводонефтяных смесей в пористой среде. Дополнительное сопротивление и капиллярное давление для единичных столбиков могут быть невелики. Но в пористой среде столбики образуются в больших количествах, и на преодоление капиллярных сил затрачивается значительная часть пластовой энергии. Капиллярные силы способствуют уменьшению проницаемости фаз.

В пористой среде водонефтяная смесь движется в капиллярах переменного сечения, при этом происходит деформация капель. При переходе глобул и шариков нефти, воды или газа из широкой части канала в суженную вследствие неравенства радиусов кривизны менисков возникает дополнительное противодавление.

ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ ПРИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ЖИДКОСТЕЙ И ПРИЧИНЫ НАРУШЕНИЯ ЗАКОНА ДАРСИ

На закономерности фильтрации жидкостей и газов в пористой среде влияют не только границы раздела между нефтью, газом и водой, но и поверхностные явления, происходящие на границах твёрдое тело-жидкость. Понижение скорости фильтрации может быть вызвано химической фиксацией адсорбционных слоев поверхностно-активных компонентов нефти, например кислотного типа, на активных местах поверхности минеральных зёрен.

В таких случаях может наблюдался непрерывное замедление фильтрации со временем до полной закупорки перовых каналов вследствие возрастания толщины коллоидных пленок.

Установлено, что эффект затухания фильтрации нефтей исчезает с увеличением перепадов давлении и повышением температуры до 60-б5°С. С повышением депрессии до некоторого предела происходит срыв (размыв) образованных ранее адсорбционно-сольватных слоев. Это одна из причин нарушения закона Дарси (нелинейный характер зависимости расхода от депрессии) при изменении режима фильтрации углеводородных жидкостей в пористой среде.

Дебиты скважин вследствие образования в пласте смоло-парафиновых отложений в ряде случаев уменьшаются, и для борьбы с этим прогревают призабойную зону или обрабатывай забой какими-либо средствами.

Другой причиной нарушения закона Дарси могут быть аномальные свойства жидкостей, связанные с отклонением от закона трения Ньютона.

ОБЩАЯ СХЕМА ВЫТЕСНЕНИЯ ИЗ ПЛАСТА НЕФТИ ВОДОЙ И ГАЗОМ

В природных условиях наиболее распространены залежи, разрабатываемые на напорных режимах (или эти режимы работы воспроизводятся и поддерживаются искусственно путем нагнетания в залежь воды или газа). Нефть из таких залежей вытесняется внешними агентами - краевой или нагнетаемой водой, свободным газом газовой шапки или газом, нагнетаемым в пласт с поверхности. Несмотря на существенные различия в отдельных деталях процесса, общая качественная схема вытеснения нефти водой и газом имеет много общего.

Нефть и вытесняющий ее агент движутся одновременно в пористой среде.

Однако полного вытеснения нефти замещающими ее агентами никогда не происходит, так как ни газ, ни вода не действуют на нефть как «поршни». Вследствие неоднородности размеров пор в процессе замещения вытесняющая жидкость или газ с меньшей вязкостью неизбежно опережает нефть. При этом насыщение породы различными фазами, а следовательно, и эффективная проницаемость для нефти и вытесняющих агентов непрерывно изменяются. С увеличением водонасыщенности, например до 50-60 %, увеличивается количество воды в потоке в связи с возрастанием эффективной проницаемости породы для воды. При этом нефть уже не вытесняется из пор, а, скорее, увлекается струёй воды. Таким образом, по длине пласта образуется несколько зон с различной водонефтенасыщенностью. Типичная картина изменения водонасыщенности по длине пласта в один из моментов времени при вытеснении нефти водой приведена на рис. 6.2. Эта схема процесса представляется всеми исследователями как суммарный результат проявления капиллярных и гидродинамических сил.

Водонасыщенность пласта уменьшается от максимального значения Smax,

соответствующего конечной нефтеотдаче на начальной линии нагнетания воды, до значения насыщенности погребённой воды Sn. При этом в пласте можно отметить три зоны. В первой из них, где водонасыщенность изменяется от Smax до Sф, на условном контуре вытеснения она плавно понижается по направлению к нефтенасыщенной части пласта. Этот участок характеризует зону водонефтяной смеси, в которой постепенно вымывается нефть.

Рис. 6.2. Изменение нефтеводонасыщенности по длине пласта при вытеснении нефти водой.

Второй участок (зона II) с большим уклоном кривой представляет собой переходную зону от вымывания нефти (зона I) к зоне III движения чистой нефти. Эту зону принято называть стабилизированной. Длина ее в естественных условиях может достигать нескольких метров.

Аналогичное распределение газа и нефти в пласте образуется при вытеснении нефти газом. Разница главным образом количественная в связи с различной вязкостью воды и газа.

Кроме свободного газа газовой шапки, нефть из пласта может вытесняться также газом, выделяющимся из раствора. Иногда растворенный газ является единственным источником энергии в залежи. Энергия растворенного в нефти газа проявляется в тех случаях, когда давление в залежи падает ниже давления насыщения нефти газом.

Свободный газ со снижением давления вначале выделяется у твердой поверхности, так как затрачиваемая работа, необходимая для образования пузырька у стенки (за исключением случая полного смачивания поверхности твердого тела жидкостью), меньше, чем необходимо для его образования в свободном пространстве жидкости. После образования пузырька газонасыщенность структуры увеличивается.

Вначале газовые пузырьки находятся далеко друг от друга, но, постепенно расширяясь, газонасыщенные участки соединяются друг с другом. После образования пузырьков газа они вытесняют нефть из пласта в том объеме, который занимают в поровом пространстве. Такой эффективный процесс вытеснения продолжается до тех пор, пока газонасыщенные участки перемежаются с нефтью (т. е. до образования сплошных газонасыщенных участков). С этого момента эффективность вытеснения нефти газом понижается по мере увеличения газонасыщенности пор пласта, так как малая вязкость газа позволяет ему быстрее нефти перемещаться к скважинам, в зоны пониженного давления (к забоям), по газонасыщенным участкам.

НЕФТЕОТДАЧА ПЛАСТОВ ПРИ РАЗЛИЧНЫХ УСЛОВИЯХ ДРЕНИРОВАНИЯ ЗАЛЕЖИ

Коэффициентом нефтеотдачи пласта принято называть разность между начальной и остаточной (конечной) нефтенасыщенностью, отнесенную к начальной.

При современном уровне развития технологии и техники нефтедобычи физически возможный коэффициент нефтеотдачи значительно меньше единицы. Даже если сетка расположения скважин плотная, а водные факторы значительные, нефтеотдача редко достигает 70-80 %

Нефтеотдача зависит от вида используемой энергии. Наибольшее ее значение отмечается в условиях вытеснения нефти водой, что связано обычно с большими запасами энергии краевых вод, которые могут быть даже неограниченными по сравнению с запасами энергии свободного газа, сжатого в газовой шапке и растворённого в нефти. Это объясняется также большой эффективностью промывки пор водой, так как соотношение вязкостей нефти и воды более благоприятно при вытеснении нефти водой, чем газом. Наконец, увеличению нефтеотдачи при вытеснении нефти водой может благоприятствовать физико-химическое взаимодействие воды с породой и нефтью. Вода обладает лучшей отмывающей и вытесняющей способностью, чем газ.

Эффективность вытеснения нефти газом, выделяющимся из раствора, ниже эффективности при других источниках пластовой энергии. Это объясняется ограниченным объёмом газа, который имеется в пласте, и небольшим соотношением вязкостей газа и нефти, что способствует быстрому прорыву газа в скважины вследствие его большой подвижности. Газ, кроме того, является фазой, не смачивающей породы пласта, что способствует увеличению количества остаточной нефти.

Значительно эффективнее проявляется энергия газа из газовой шапки. В процессе расширения газа нефть перемещается к забою, и первоначально происходит эффективное вытеснение нефти из пласта при сравнительно небольшой его газонасыщенности. Дальнейшее снижение эффективности расширения газовой шапки обусловлено в основном несмачиваемостью твердой фазы газом и небольшой его вязкостью, что приводит к прорыву газа к скважинам через крупные каналы и более проницаемые зоны пласта.

Значительное влияние на нефтеотдачу залежей с газовой шапкой оказывает угол наклона пластов. При крутых углах падения пластов условия гравитационного отделения газа от нефти улучшаются, и эффективность вытеснения нефти газом повышается.

Низкая нефтеотдача естественных коллекторов объясняется микро- и макронеоднородным характером их строения. Микронеоднородный и сложный характер строения перового пространства - причина прорыва вод и газа по отдельным каналам и образования водонефтегазовых смесей в пористой среде. Совместное движение различных несмешивающихся фаз в пласте представляет собой сложный процесс, в котором капиллярные силы проявляются во много раз больше, чем при «поршневом» вытеснении нефти водой.

Известно, что вытеснение взаимно растворимых жидкостей характеризуется высокой нефтеотдачей, близкой к 95-100 %.

Высокая вязкость нефти по сравнению с вязкостью воды способствует уменьшению нефтеотдачи. По результатам исследований с увеличением вязкости нефти значительнее проявляются различные местные неоднородности физических свойств пород, приводящие к возникновению небольших, но многочисленных участков, обойденных фронтом воды и плохо ею промываемых.

На нефтеотдачу пластов в значительной степени влияет удельная поверхность пород. Нефть гидрофобизует поверхность твердой фазы, и часть нефти, находящейся в пленочном состоянии, может быть удалена из пласта лишь специальными методами воздействия.

Макронеоднородное строение пластов - наиболее существенная причина неполной отдачи нефти пластом. Неоднородностью строения, свойств и состава пород объясняется появление зон, не промываемых водой и слабо дренируемых газом. Оказалось также, что нефтеотдача зависит от свойств пористой среды и условий вытеснения нефти водой и газом (количество и состав связанной воды, состав и физико-химические свойства нефти и горных пород, скорость вытеснения и др.).

Исходя из причин, вызывающих неполную отдачу пластом нефти, можно отметить следующие пластовые формы существования остаточной нефти:

1)капиллярно удержанная нефть;

2)нефть в пленочном состоянии, покрывающая поверхность твердой фазы;

3) нефть, оставшаяся в малопроницаемых участках, обойденных и плохо промытых водой;

4) нефть в линзах, отделенных от пласта непроницаемыми перемычками и не вскрытых скважинами;

5) нефть, задержавшаяся у местных непроницаемых экранов (сбросы и другие непроницаемые перемычки).

Пленочная нефть покрывает тонкой смачивающей пленкой поверхность твердой фазы пласта. Количество этой нефти определяется радиусом действия молекулярных сил твердой и жидкой фаз, строением поверхности минерала и размером удельной поверхности пород.

Измерения тонких слоев жидкости, а также исследования распределения остаточной воды в пористой среде показывают, что объем остаточной нефти, находящейся в пленочном состоянии, в реальных условиях во много раз меньше, чем капиллярно удержанной.

Кроме пленочной и капиллярно удержанной нефти, значительные ее количества могут оставаться в обойденных и плохо промытых водой участках, а также в изолированных линзах, тупиках и местных непроницаемых экранах и перемычках.

Небольшие значения коэффициентов нефтеотдачи естественных коллекторов свидетельствуют о значительном количестве нефти, остающейся пласте в виде мелких и больших ее целиков вследствие неоднородности строения пород и пластов.

Как уже упоминалось, наиболее эффективен водонапорный режим, и поэтому для повышения нефтеотдачи пластов при разработке залежей нефти следует стремиться к сохранению естественного или воспроизведению искусственного режима вытеснения нефти водой. Технология заводнения может быть улучшена выбором таких параметров процесса, которые обеспечивают наилучшие условия вытеснения нефти водой. При заводнении залежей можно изменять режим (скорость) закачки воды в пласт, поверхностное ее натяжение на, границе с нефтью и смачивающие свойства (обработкой воды специальными веществами), вязкость и температуру.

РОЛЬ КАПИЛЛЯРНЫХ ПРОЦЕССОВ ПРИ ВЫТЕСНЕНИИ НЕФТИ ВОДОЙ ИЗ ПОРИСТЫХ СРЕД

Поровое пространство нефтесодержащих пород представляет собой огромна скопление капиллярных каналов, в которых движутся несмешивающиеся жидкости, образующие мениски на разделах фаз. Поэтому капиллярные силы влияют на процессы вытеснения нефти.

За водонефтяным контактом мениски создают многочисленные эффекты Жамена и препятствуют вытеснению нефти. Если среда гидрофильна, в области водонефтяного контакта давление, развиваемое менисками, способствует возникновению процессов капиллярного пропитывания и перераспределения жидкостей. Это связано с неоднородностью пор по размерам. Капиллярное давление, развиваемое в каналах небольшого сечения, больше, чем в крупных порах. В результате этого на водонефтяном контакте возникают процессы противоточной капиллярной пропитки - вода по мелким порам проникает в нефтяную часть пласта, по крупным порам нефть вытесняется в водоносную часть. Поэтому необходимо решить, какие воды следует выбирать для заводнения залежей: интенсивно впитывающиеся в нефтяную часть залежи под действием капиллярных сил или слабо проникающие в пласт. Изменяя качества нагнетаемых в залежь вод, можно воздействовать на поверхностное натяжение на границе с нефтью, смачивающие характеристики, а также вязкостные свойства.

Необходимо отметить, что вопрос об увеличении или уменьшении капиллярных сил, так же как и многие другие задачи физики вытеснения нефти водой, не имеет однозначного решения. В условиях зернистых неоднородных коллекторов процессы перераспределения нефти и воды под действием капиллярных сил могут способствовать преждевременным нарушениям сплошности нефти в нефтеподводящих системах капилляров в зоне совместного движения нефти и воды, помогая формированию водонефтяных смесей в поровом пространстве, что сопровождается значительным уменьшением нефтеотдачи. В трещиноватых коллекторах нефтеотдача блоков повышается при нагнетании в залежь воды, способной интенсивно впитываться в породу под влиянием капиллярных сил.

ЗАВИСИМОСТЬ НЕФТЕОТДАЧИ ОТ СКОРОСТИ ВЫТЕСНЕНИЯ НЕФТИ ВОДОЙ

Анализ результатов большого числа исследований, посвященных этой проблеме, позволяет сделать вывод о связи между капиллярными свойствами пластовой системы и характером зависимости нефтеотдачи от скорости вытеснения нефти водой. Во всех случаях, когда пласт гидрофобен и капиллярные силы противодействуют вытеснению нефти из пористой среды водой, нефтеотдача возрастает с увеличением скорости продвижения водонефтяного контакта (т. е. увеличивается с ростом градиентов давлении). Когда капиллярные силы ослаблены (вследствие низких значений поверхностного натяжения, проницаемости пород > 1-2 мкм2 и др.), скорость вытеснения нефти водой не влияет на нефтеотдачу.

На практике часто встречаются залежи нефти, чрезвычайно разнообразные по степени неоднородности пород и строению пластов. В этом случае на зависимость нефтеотдачи от перепада давлений (от скорости вытеснения) оказывают влияние, кроме физико-химических свойств пластовой системы, многие другие факторы. Например, в ряде случаев известны факты включения в работу с увеличением депрессии дополнительных пропластков, которые раньше (при меньших перепадах давлений) не участвовали в притоке нефти. С возрастанием депрессии перераспределяются давления в пласте при соответствующих изменениях геометрии потока, охватывающего дополнительные участки пласта, ранее мало отдававшие нефть. Существуют и другие факторы, влияющие на результаты вытеснения нефти водой из естественных пластов и на зависимость нефтеотдачи от величины депрессии. Поэтому в реальных условиях возможны различные коэффициенты нефтеотдачи независимо от физико-химических свойств пласта.

По результатам наблюдений многих исследователей, повышение градиентов давлений в пласте оказывает благоприятное влияние на нефтеотдачу залежей нефти, приуроченных к неоднородным коллекторам.



Статьи по теме: