Электрический ток в вакууме. Электронная эмиссия

А возможно ли распространение электрического тока в вакууме (от лат. vacuum - пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С помощью явления термоэлектронной эмиссии - испускания веществом электронов при нагревании.

Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) - приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток - катод, холодный электрод, собирающий термоэлектроны – анод.

Полного вакуума нельзя получить никаким насосом. Сколько бы мы ни откачивали лампу, следы газа всегда в ней останутся. Поэтому в лампе электрический ток, с которым мы только что познакомились, проходит фактически не в вакууме, а в очень разреженном газе.

Современные насосы дают столь высокое разрежение, что остающиеся в разрядной трубке молекулы практически не влияют на движение электронов и ток проходит так же, как и в полном вакууме. Однако в некоторых случаях лампа сознательно не откачивается до такой степени. В такой лампе электроны на своём пути многократно сталкиваются с молекулами газа. При ударах они передают молекулам газа часть своей энергии. Обычно эта энергия идёт на нагревание газа, но при определённых условиях молекулы или атомы газа излучают её в виде света. Такие светящиеся трубки можно увидеть над дверями метро, на витринах и вывесках магазинов.

Прохождение электрического тока в газе - чрезвычайно сложное и многообразное явление. Одной из форм его является электрическая дуга, применяемая при электросварке и плавлении металлов.

Температура в ней при атмосферном давлении около 3700 градусов. В дуге, горящей в газе, сжатом до 20 атмосфер, температура доходит до 5900 градусов, то-есть до температуры поверхности Солнца.

Электрическая дуга испускает яркий белый свет и поэтому применяется ещё как мощный источник света в проекционных фонарях и в прожекторах.

Другой формой электрического разряда служит пробой газа. Будем сближать два разноимённо заряженных металлических шара (см. рисунок на обложке). При этом электрическое поле между ними возрастает. Наконец, оно становится настолько большим, что вырывает электроны из молекул воздуха, находящихся между шарами. Происходит ионизация воздуха. Образовавшиеся свободные электроны и ионы устремляются к шарам. На своём пути они разбивают новые молекулы, создают новые ионы. Воздух на мгновение становится проводящим.

Подходя к шарам, ионы нейтрализуют заряды шаров; поле исчезает. Оставшиеся ионы вновь соединяются в молекулы. Воздух снова изолятор.

Всё это происходит в доли секунды. Пробой сопровождается искрой и треском. Искра - результат свечения молекул, возбуждаемых ударами летящих зарядов. Треск вызван расширением воздуха вследствие его нагревания на пути искры.

Это явление напоминает в миниатюре молнию и гром. Действительно, молния - это такой же электрический разряд, происходящий при сближении двух разноимённо заряженных облаков или между облаком и Землёй.

Будем сближать теперь не два предварительно заряженных шара, а два угольных или металлических электрода, присоединённых к достаточно мощному генератору. Возникающий между ними разряд не прекращается, так как благодаря генератору электроды не нейтрализуются попадающими на них ионами. Вместо очень кратковременного пробоя воздуха создаётся устойчивая электрическая дуга (рис. 12), о которой мы уже говорили выше. Высокая температура, развивающаяся в дуге, поддерживает ионизованное состояние воздуха между электродами, а также создаёт значительную термоэлектронную эмиссию из катода.

Тема. Электрический ток в вакууме

Цель урока: разъяснить ученикам природу электрического тока в вакууме.

Тип урока: урок изучения нового материала.

ПЛАН УРОКА

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

Вакуум - это состояние газа, при котором давление меньше атмосферного. Различают низкий, средний и высокий вакуум.

Для создания высокого вакуума необходимое разрежение, за которого в газе, что остался, средняя длина свободного пробега молекул больше размеров сосуда или расстояния между электродами в сосуде. Следовательно, если в сосуде создан вакуум, то молекулы в нем почти не сталкиваются между собой и пролетают свободно межэлектродный пространство. При этом они испытывают столкновения лишь с электродами или со стенками сосуда.

Чтобы в вакууме существовал ток, необходимо поместить в вакуум источник свободных электронов. Наибольшая концентрация свободных электронов в металлах. Но при комнатной температуре они не могут покинуть металл, потому что их в нем удерживают силы кулоновского притяжения положительных ионов. Для преодоления этих сил электрону, чтобы покинуть поверхность металла, необходимо затратить определенную энергию, которую называют работой выхода.

Если кинетическая энергия электрона превысит или будет равна работе выхода, то он покинет поверхность металла и станет свободным.

Процесс испускания электронов с поверхности металла называют эмиссией. В зависимости от того, как была передана электронам необходима энергия, различают несколько видов эмиссии. Один из них - термоелектронна эмиссия.

Ø Испускание электронов нагретыми телами называют термоелектронною эмиссией.

Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако. Электрод при этом заряжается положительно, и под воздействием электрического поля заряженного облака электроны из облака частично возвращаются на электрод.

В равновесном состоянии число электронов, покинувших электрод за секунду, равно числу электронов, которые вернулись на электрод за это время.

Для существования тока необходимо выполнение двух условий: наличие свободных заряженных частиц и электрического поля. Для создания этих условий в баллон помещают два электрода (катод и анод) и выкачивают из баллона воздуха. В результате нагрева катода из него вылетают электроны. На катод подают отрицательный потенциал, а на анод - положительный.

Современный вакуумный диод состоит из стеклянного или металлокерамического баллона, из которого откачан воздух до давления 10-7 мм рт. ст. В баллон впаяны два электрода, один из которых - катод - имеет вид вертикального металлического цилиндра, изготовленного из вольфрама и покрытого обычно слоем оксидов щелочноземельных металлов.

Внутри катода расположен изолированный проводник, что его нагревает переменный ток. Нагретый катод испускает электроны, достигающие анода. Анод лампы представляет собой круглый или овальный цилиндр, имеющий общую ось с катодом.

Односторонняя проводимость вакуумного диода обусловлена тем, что вследствие нагревания электроны вылетают из горячего катода и движутся до холодного анода. Электроны могут двигаться через диод только от катода к аноду (то есть электрический ток может протекать только в обратном направлении: от анода к катоду).

На рисунке воспроизведен вольт-амперную характеристику вакуумного диода (отрицательное значение напряжения соответствует случаю, когда потенциал катода выше потенциала анода, то есть электрическое поле «пытается» вернуть электроны обратно на катод).

Вакуумные диоды используют для выпрямления переменного тока. Если поместить между катодом и анодом еще один электрод (сетку), то даже незначительное изменение напряжения между сеткой и катодом существенно влиять на анодный ток. Такая электронная лампа (триод) позволяет усиливать слабые электрические сигналы. Поэтому некоторое время эти лампы были основными элементами электронных устройств.

Электрический ток в вакууме применяли в электронно-лучевой трубке (ЭЛТ), без которой долгое время нельзя было представить телевизор или осциллограф.

На рисунке упрощенно показана конструкция ЭЛТ.

Электронная «пушка» в горловине трубки - катод, который испускает интенсивный пучок электронов. Специальная система цилиндров с отверстиями (1) фокусирует этот пучок, делает его узким. Когда электроны попадают на экран (4), он начинает светиться. Управлять потоком электронов можно с помощью вертикальных (2) или горизонтальных (3) пластин.

Электронам в вакууме можно передать значительную энергию. Электронные пучки можно применять даже для плавки металлов в вакууме.

ВОПРОС К УЧАЩИМСЯ В ХОДЕ ИЗЛОЖЕНИЯ НОВОГО МАТЕРИАЛА

Первый уровень

1. С какой целью в электронных лампах создают высокий вакуум?

2. Почему вакуумный диод проводит ток только в одном направлении?

3. Каково назначение электронной пушки?

4. Как осуществляют управление электронными пучками?

Второй уровень

1. Какие особенности имеет вольт-амперная характеристика вакуумного диода?

2. Будет ли работать в космосе радіолампа с разбитым стеклом?

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

1. Что нужно сделать, чтобы триелектродну лампу можно было использовать как диод?

2. Каким образом можно: а) увеличить скорость электронов в пучке; б) изменить направление движения электронов; в) остановить движущиеся электроны?

1. Максимальный анодный ток в вакуумном диоде 50 мА. Сколько электронов вылетает из катода ежесекундно?

2. Пучок электронов, которые разгоняются напряжением U 1 = 5 кВ, влетает в плоский конденсатор посередине между пластинами и параллельно к ним. Длина конденсатора l = 10 см, расстояние между пластинами d = 10 мм. За какого наименьшего напряжения U 2 на конденсаторе электроны не будут вылетать из него?

Решения. Движение электрона напоминает движение тела, брошенного горизонтально.

Горизонтальная составляющая v скорости электрона не меняется, она совпадает со скоростью электрона после ускорения. Эту скорость можно определить, воспользовавшись законом сохранения энергии: Здесь e - элементарный электрический заряд, me - масса электрона. Вертикальное ускорение a передает электрону сила F , действующая со стороны электрического поля конденсатора. Согласно второму закону Ньютона,

где - напряженность электрического поля в конденсаторе.

Электроны не будут вылетать из конденсатора, если они сместятся на расстояние d /2 .

Итак, - время движения электрона в конденсаторе. Отсюда

Проверив единицы величин и подставив числовые значения, получаем U 2 = 100 B .

ЧТО МЫ УЗНАЛИ НА УРОКЕ

Вакуум - газ, разреженный настолько, что средняя длина свободного пробега молекул превышает линейные размеры сосуда.

Энергию которую необходимо затратить электрону, чтобы покинуть поверхность металла, называют работой выхода.

Испускание электронов нагретыми телами называют термоелектронною эмиссией.

Электрический ток в вакууме представляет собой направленный движение электронов, полученных в результате термоэлектронной эмиссии.

Вакуумный диод имеет одностороннюю проводимость.

Электронно-лучевая трубка позволяет управлять движением электронов. Именно ЭЛТ сделала возможным создание телевидения.

Домашнее задание

1. Подр-1: § 17; подр-2: § 9.

Рів1 № 6.12; 6.13; 6.14.

Рів2 № 6.19; 6.20; 6.22, 6.23.

3. Д: подготовиться к самостоятельной работе № 4.

ЗАДАНИЯ ИЗ САМОСТОЯТЕЛЬНОЙ РАБОТЫ № 4 «ЗАКОНЫ ПОСТОЯННОГО ТОКА»

Задание 1 (1,5 балла)

Движение каких частиц создает электрический ток в жидкостях?

А Движение атомов.

Бы Движение молекул.

В Движение электронов.

Г Движение положительных и отрицательных ионов.

На рисунке показан электрический разряд в воздухе, созданный с помощью трансформатора Тесла.

А Электрический ток в любом газе обращен в ту сторону, куда движутся отрицательные ионы.

Бы Проводимость любого газа обусловлена движением только электронов.

В Проводимость любого газа обусловлена движением только ионов.

Г Проводимость любого газа обусловлена движением только электронов и ионов.

Задача 3 имеет целью установить соответствие (логическую пару). К каждой строке, отмеченного буквой, подберите утверждение, обозначенное цифрой.

А Полупроводники n -типа.

Б Полупроводники p -типа.

Электронная проводимость.

Г Дырочная проводимость.

1 Полупроводники, в которых основными носителями зарядов являются дырки.

2 Полупроводники, в которых основными носителями зарядов являются электроны.

3 Проводимость полупроводника, обусловленная движением дырок.

4 Проводимость полупроводника, обусловленная движением электронов.

5 Полупроводники, в которых основными носителями зарядов являются электроны и дырки.

По какой силы тока проводился электролиз водного раствора CuSO 4 , если за 2 мин. на катоде выделилось 160 г меди?


Вакуум – состояние разреженного газа, при котором длина свободного пробега молекул λ больше размеров сосуда d, в котором находится газ.

Из определения вакуума следует, что между молекулами практически отсутствует взаимодействие, поэтому ионизация молекул произойти не может, следовательноно, свободных носителей заряда в вакууме получить нельзя, поэтому - электрический ток в нем невозможен;
Чтобы создать электрический ток в вакууме, нужно в него поместить источник свободных заряженных частиц. В вакуум помещают металлические электроды, подключенные к источнику тока. Один из них нагревают (он называется катодом), в результате чего происходит процесс ионизации, т.е. из вещества вылетают электроны, образуются положительные и отрицательные ионы. Действие такого источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии.

Термоэлектронная эмиссия – это процесс испускания электронов с нагретого катода. Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако. Электрод заряжается положительно, и под влиянием электрического поля заряженного облака, электроны из облака частично возвращаются на электрод. В равновесном состоянии число электронов, покинувших электрод в секунду, равно числу электронов, возвратившихся на электрод за это время. Чем выше температура металла, тем выше плотность электронного облака. Работа, которую должен совершить электрон, чтобы покинуть металл, получила название работы выхода А вых.

[А вых ] = 1 эВ

1 эВ – это энергия, которую приобретает электрон, двигаясь в электрическом поле между точками с разностью потенциалов в 1 В.

1 эВ = 1,6*10 -19 Дж

Различие между температурами горячих и холодных электродов, впаянных в сосуд, из которого откачан воздух, приводит к односторонней проводимости электрического тока между ними.

При подключении электродов к источнику тока между ними возникает электрическое поле. Если положительный полюс источника тока соединен с холодным электродом (анодом), а отрицательный – с нагретым (катодом), то вектор напряженности электрического поля направлен к нагретому электроду. Под действием этого поля электроны частично покидают электронное облако и движутся к холодному электроду. Электрическая цепь замыкается, и в ней устанавливается электрический ток. При противоположной полярности включения источника, напряженность поля направлена от нагретого электрода к холодному. Электрическое поле отталкивает электроны облака назад к нагретому электроду. Цепь оказывается разомкнутой.


Устройство, которое обладает односторонней проводимостью электрического тока называется вакуумный диод. Состоит из электронной лампы (сосуда), из которой выкачан воздух и в котором находятся электроды, подключенные к источнику тока. Вольтамперная характеристика вакуумного диода. Подписать участки ВАХ пропускной режим диода и закрытый?? При малых напряжениях на аноде не все электроны, испускаемые катодом, достигают анода, и электрический ток небольшой. При больших напряжениях ток достигает насыщения, т.е. максимального значения. Вакуумный диод используется для выпрямления переменного электрического тока. В настоящее время вакуумные диоды практически не применяются.

Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренных электрическим полем, пролетит в это отверстие, образуя за анодом электронный пучок. Электронный пучок – это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах.

Свойства электронных пучков:
- отклоняются в электрических полях;
- отклоняются в магнитных полях под действием силы Лоренца;
- при торможении пучка, попадающего на вещество возникает рентгеновское излучение;
- вызывает свечение (люминисценцию) некоторых твердых и жидких тел;
- нагревают вещество, попадая на него.

Электронно-лучевая трубка (ЭЛТ).
В ЭЛТ используются явления термоэлектронной эмиссии и свойства электронных пучков.

В электронной пушке электроны, испускаемые подогреваемым катодом, проходят через управляющий электрод-сетку и ускоряются анодами. Электронная пушка фокусирует электронный пучок в точку и изменяет яркость свечения на экране. Отклоняющие горизонтальные и вертикальные пластины позволяют перемещать электронный пучок на экране в любую точку экрана. Экран трубки покрыт люминофором, который начинает светиться при бомбардировке его электронами.

Существуют два вида трубок:
1) с электростатическим управлением электронного пучка (отклонение эл. пучка только лишь электрическим полем);
2) с электромагнитным управлением (добавляются магнитные отклоняющие катушки).
В электронно-лучевых трубках формируются узкие электронные пучки, управляемые электрическими и магнитными полями. Эти пучки используются в: кинескопах телевизоров, дисплеях ЭВМ, электронных осциллографах в измерительной технике.

Электрический ток может образоваться не только в металлах, но и в вакууме, например в радиолампах, в электронно-лучевых трубках. Выясним природу тока в вакууме.

В металлах имеется большое количество свободных, беспорядочно движущихся электронов. Когда электрон подходит к поверхности металла, то силы притяжения, действующие на него со стороны положительных ионов и направленные внутрь, препятствуют выходу электрона из металла. Работа, которую надо совершить для удаления электрона из металла в вакууме, называется работой выхода. Для разных металлов она различна. Так, для вольфрама она равна 7,2*10 -19 дж. Если энергия электрона меньше работы выхода, он не может покинуть металл. Много электронов даже при комнатной температуре, энергия которых не намного больше работы выхода. Покинув металл, они удаляются от него на небольшое расстояние и под действием сил притяжения ионов возвращаются в металл, в результате чего вблизи поверхности образуется тонкий слой выходящих и возвращающихся электронов, находящихся в динамическом равновесии. Вследствие потери электронов поверхность металла заряжается положительно.

Чтобы электрон покинул металл, он должен совершить работу против сил отталкивания электрического поля электронного слоя и против сил электрического поля положительно заряженной поверхности металла (рис. 85. а). При комнатной температуре почти нет электронов, которые могли бы выйти за двойной заряженный слой.

Чтобы электроны могли вылететь за пределы двойного слоя, им надо иметь энергию намного больше, чем работа выхода. Для этого извне электронам сообщается энергия, например нагреванием. Испускание электронов нагретым телом называется термоэлектронной эмиссией. Она является одним из доказательств наличия свободных электронов в металле.

Явление термоэлектронной эмиссии можно наблюдать на таком опыте. Зарядив электрометр положительно (от наэлектризованной стеклянной палочки), соединим его проводником с электродом А демонстрационной вакуумной лампы (рис. 85, б). Электрометр не разряжается. Замкнув цепь, накалим нить К. Видим, стрелка электрометра опадает - электрометр разряжается. Электроны, испускаемые накаленной нитью, притягиваются положительно заряженным электродом А и нейтрализуют его заряд. Поток термоэлектронов от нити накала к электроду А под действием электрического поля образовал электрический ток в вакууме.

Если электрометр зарядить отрицательно, то он в таком опыте разряжаться не будет. Вылетающие из нити накала электроны теперь не притягиваются электродом А, а наоборот, отталкиваются от него и возвращаются обратно к нити накала.

Соберем электрическую цепь (рис. 86). При ненагретой нити К цепь между ней и электродом А разомкнута - стрелка гальванометра стоит на нуле. В его цепи тока нет. Замкнув ключ, нагреем нить накала. По цепи гальванометра пошел ток, так как термоэлектроны замкнули цепь между нитью накала и электродом А, образовав тем самым электрический ток в вакууме. Электрический ток в вакууме есть направленный поток электронов под действием электрического поля. Скорость направленного движения электронов, образующих ток в вакууме, в миллиарды раз больше скорости направленного движения электронов, образующих ток в металлах. Так, скорость потока электронов у анода ламп радиоприемника достигает нескольких тысяч километров в секунду.

Урок № 40-169 Электрический ток в газах. Электрический ток в вакууме.

В обычных условиях газ - это диэлектрик (R), т.е. состоит из нейтральных атомов и молекул и не содержит свободных носителей электрического тока. Газ-проводник - это ионизированный газ, он обладает электронно-ионной проводимостью.

Воздух- диэлектрик

Ионизация газа - это распад нейтральных атомов или молекул на положительные ионы и электроны под действием ионизатора (ультрафиолетовое, рентгеновское и радиоактивное излучения; нагрев) и объясняется распадом атомов и молекул при столкновениях на высоких скоростях. Газовый разряд – прохождение электрического тока через газ. Газовый разряд наблюдается в газоразрядных трубках (лампах) при воздействии электрического или магнитного поля.

Рекомбинация заряженных частиц

Газ перестает быть проводником, если ионизация прекращается, это происходит вследствие рекомбинации (воссоединения противоположно заряженных частиц). Виды газовых разрядов: самостоятельный и несамостоятельный.
Несамостоятельный газовый разряд - это разряд, существующий только под действием внешних ионизаторов Газ в трубке ионизирован, на электроды подается напряже­ние (U) и в трубке возникает электрический ток(I). При увеличении U возрастает сила тока I Когда все заряженные частицы, образующиеся за секунду, достигают за это время электро­дов (при некотором напряжении (U*), ток достигает насыщения (I н). Если действие иони­затора прекращается, то прекращается и разряд (I= 0).Самостоятельный газовый разряд - разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора за счет ионов и электронов, возникших в результате ударной ионизации (= ионизации электрического удара); возникает при увеличении разности потенциалов между электродами (возникает электронная лавина). При некотором значении напряжения (U пробоя) сила тока снова возрастает. Ионизатор уже не нужен для поддер­жания разряда. Происходит ионизация электронным ударом . Несамостоятельный газовый разряд может переходить в самостоятельный газовый разряд при U а = U зажигания.Электрический пробой газа - переход несамостоятельного газового разряда в самостоятельный. Типы самостоятельного газового разряда: 1. тлеющий - при низких давлениях (до нескольких мм рт.ст.) - наблюдается в газосветных трубках и газовых лазерах. (лампы дневного света) 2. искровой - при нормальном давлении (P = P атм высокой напряженности электрического поля Е (молния - сила тока до сотен тысяч ампер). 3. коронный - при нормальном давлении в неоднородном электрическом поле (на острие, огни святого Эльма).

4. дуговой - возникает между близко сдвинутыми электродами - большая плотность тока, малое напряжение между электродами, (в прожекторах, проекционной киноаппаратуре, сварка, ртутные лампы)

Плазма - это четвертое агрегатное состояние вещества с высокой степенью ионизации за счет столкновения молекул на большой скорости при высокой температуре; встречается в природе: ионосфера – слабо ионизированная плазма, Солнце - полностью ионизированная плазма; искусственная плазма – в газоразрядных лампах. Плазма бывает: 1. - низкотемпературная Т 10 5 К. Основные свойства плазмы: - высокая электропроводность; - сильное взаимодействие с внешними электрическими и магнитными полями. При Т = 20∙ 10 3 ÷ 30∙ 10 3 К любое вещество - плазма. 99% вещества во Вселенной - плазма.

Электрический ток в вакууме.

Вакуум – сильно разреженный газ, соударений молекул практически нет, длина свободного пробега частиц (расстояние между столкновениями) больше размеров сосуда (Р « Р~10 -13 мм рт. ст.). Для вакуума характерна электронная проводимость (ток – движение электронов), сопротивление практически отсутствует (R
). В вакууме: - электрический ток невозможен, т.к. возможное количество ионизированных молекул не может обеспечить электропроводность; - создать электрический ток в вакууме можно, если использовать источник заряженных частиц; - действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии. Термоэлектронная эмиссия - явление вылета свободных электронов с поверхности нагретых тел, испускание электронов твердыми или жидкими телами происходит при их нагревании до температур, соответствующих видимому свечению раскаленного металла. Нагретый металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако. В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, возвратившихся на него (т.к. электрод при потере электронов заряжается положительно). Чем выше температура металла, тем выше плотность электронного облака. Электрический ток в вакууме возможен в электронных лампах. Электронная лампа - устройство, в котором применяется явление термоэлектронной эмиссии.


Вакуумный диод.

Вакуумный диод - это двухэлектродная (А- анод и К - катод) электронная лампа. Внутри стеклянного баллона создается очень низкое давление (10 -6 ÷10 -7 мм рт. ст.), Нить накала, помещена внутрь катода для его нагревания. Поверхность нагретого катода испускает электроны. Если анод соединен с “+” источника тока, а катод с “–”, то в цепи протекает постоянный термоэлектронный ток. Вакуумный диод обладает односторонней проводимостью. Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая электрический ток в вакууме.

ВАХ (вольтамперная характеристика) вакуумного диода.

Ток на входе диодного выпрямителя При малых напряжениях на аноде не все электроны, испускаемые катодом, достигают анода, и ток небольшой. При больших напряжениях ток достигает насыщения, т.е. максимального значения. Вакуумный диод обладает односторонней проводимостью и используется для выпрямления переменного тока.

Электронные пучки - это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах. Свойства электронных пучков: - отклоняются в электрических полях; - отклоняются в магнитных полях под действием силы Лоренца; - при торможении пучка, попадающего на вещество, возникает рентгеновское излучение; - вызывает свечение (люминесценцию) некоторых твердых и жидких тел (люминофоров); - нагревают вещество, попадая на него.

Электронно - лучевая трубка (ЭЛТ)

- используются явления термоэлектронной эмиссии и свойства электронных пучков. Состав ЭЛТ: электронная пушка, горизонтальные и вертикальные отклоняющие пластины-электродов и экран. В электронной пушке электроны, испускаемые подогревным катодом, проходят через управляющий электрод-сетку и ускоряются анодами. Электронная пушка фокусирует электронный пучок в точку и изменяет яркость свечения на экране. Отклоняющие горизонтальные и вертикальные пластины позволяют перемещать электронный пучок на экране в любую точку экрана. Экран трубки покрыт люминофором, который начинает светиться при бомбардировке его электронами. Существуют два вида трубок: 1. с электростатическим управлением электронного пучка (отклонение электронного пучка только электрическим полем) 2. с электромагнитным управлением (добавляются магнитные отклоняющие катушки). Основное применение ЭЛТ: кинескопы в телеаппаратуре; дисплеи ЭВМ; электронные осциллографы в измерительной технике. Экзаменационный вопрос 47. В каком из перечисленных ниже случаев наблюдается явление термоэлектронной эмиссии? А. Ионизация атомов под действием света. Б. Ионизация атомов в результате столкнов ений при высокой температуре. В. Испускание электронов с поверхности нагретого катода в телевизионной трубке. Г. При прохождении электрического тока через раствор электролита.

Статьи по теме: