В чем заключается процесс ректификации. Теоретические основы процесса ректификации

Одним из наиболее распространенных методов разделения жидких однородных смесей, состоящих из двух или большего числа компонентов, является перегонка (дистилляция и ректификация). В широком смысле перегонка представляет собой процесс, включающий частичное испарение разделяемой смеси и последующую конденсацию образующихся паров, осуществляемые однократно или многократно. В результате конденсации получается жидкость, состав которой отличается от состава исходной смеси.

Ректификация представляет собой процесс многократного частичного испарения жидкости и конденсации паров. Процесс осуществляется путем контакта потоков пара и жидкости, имеющих различную температуру, и проводятся обычно в колонных аппаратах. При каждом контакте из жидкости испаряется преимущественно низкокипящий компонент (НКК), которым обогащаются пары, а из паров конденсируются преимущественно высококипящий компонент (ВКК), переходящий в жидкость. Такой двусторонний обмен компонентами, повторяемый многократно, позволяет получить, в конечном счете, пары, представляющие собой почти чистый НКК. Эти пары после конденсации в отдельном аппарате дают дистиллят (ректификат) и флегму - жидкость, возвращаемую для орошения колонны и взаимодействия с поднимающимися парами. Пары получают путем частичного испарения снизу колонны остатка, являющегося почти чистым ВКК.

Процессы ректификации осуществляются в аппаратах, технологическая схема которых зависит от назначения аппарата и давления в нем, а конструкция - от способа организации контакта фаз.

При ступенчатом осуществлении процесса ректификации в колонных аппаратах контакт пара и жидкости может происходить в противотоке (на тарелках провального типа), в перекрестном токе (на колпачковых тарелках), в прямотоке (струйные тарелки).

Если процесс ректификации осуществляется непрерывно во всем объеме колонного аппарата, то контакт пара и жидкости при движении обеих фаз может происходить только в противотоке. Современные ректифицирующие аппараты можно классифицировать в зависимости от технологического назначения, давления и внутреннего устройства, обеспечивающего контакт между паром и жидкостью.

По технологическому назначению ректификационные аппараты подразделяются на колонны атмосферно-вакуумных установок, термического и каталитического крекингов, вторичной перегонки нефтепродуктов, а также для ректификации газов, стабилизации легких нефтяных фракций и т.д.

К современным ректификационным аппаратам предъявляются следующие требования: высокая разделительная способность и производительная способность, достаточная надежность и гибкость в работе, низкие эксплуатационные расходы, небольшой вес и простота, техничность конструкции.



Последние требования не менее важны чем первые, поскольку они не только определяют капитальные затраты, но и в значительной мере влияют на величину, эксплутационных расходов, обеспечивают легкость и удобства изготовления аппарата, монтажа и демонтажа, ремонта, контроля, испытания, а также безопасность эксплуатации и пр.

Кроме перечисленных выше требований ректификационные аппараты должны отвечать также требованиям государственных стандартов, ведомственных нормалей и инспекций Гостехнадзора.

Технологическая схема аппарата зависит от состава разделяемой смеси, требований к качеству получаемых продуктов, от возможностей уменьшения энергетических затрат, назначения аппарата, его места в технологической цепочке всей установки и от многих других факторов.

Процесс ректификации жидких смесей осуществляется на ректификационных установках, состоящих из нескольких аппаратов. Рассмотрим принцип разделения двухкомпонентной смеси ректификацией на примере работы подобной установки (рис. 10.1). Подлежащая разделению смесь непрерывно подается в ректификационную колонну через ввод, расположенный несколько выше середины корпуса колонны. Введенная жидкая смесь опускается по контактным устройствам (тарелкам) в нижнюю часть колонны, называемую кубом. Навстречу потоку жидкости поднимается пар, образующийся в результате кипения жидкости в кубе колонны. Образующиеся пары содержат в основном НКК и некоторое количество ВКК. При взаимодействии пара с жидкостью на тарелках колонны ВКК конденсируется и уносится вниз колонны потоком жидкости. За счет этого в поднимающихся парах возрастает количество НКК . Таким образом, при подъеме паров они обогащаются НКК , в то время как жидкость, стекающая вниз, обогащается ВКК .

Исходная смесь из промежуточной емкости 1 центробежным насосом 2 подается в теплообменник 3, где подогревается до температуры кипения. Нагретая смесь поступает на разделение в ректификационную колонну 5 на тарелку питания, где состав жидкости равен составу исходной смеси. Стекая вниз по колонне, жидкость взаимодействует с под­нимающимся вверх паром, образующимся при кипении кубовой жидкости в кипятильнике 4. Начальный состав пара примерно равен составу кубового остатка, т. е. обеднен легколетучим компонентом. В результате массообмена с жидкостью пар обо­гащается легколетучим компонентом

Рис. 10.1. Принципиальная схема ректификационной установки:

1 - ёмкость для исходной смеси; 2, 9 - насосы; 3- теплообменник- подогреватель исходного сырья; 4 – кипятильник; 5 – ректификационная колонна; 6 – дефлегматор; 7 – холодильник дистиллята; 8 – емкость для сбора дистиллята; 10 – холодильник кубовой жидкости; 11 – емкость для кубовой жидкости.

Для более полного обо­гащения верхнюю часть колонны орошают в соответствии с за­данным флегмовым числом жидкостью (флегмой), которая получается в дефлегматоре 6 путем конденсации пара, выходящего из колонны. Часть конденсата выводится из де­флегматора в виде готового продукта разделения - дистиллята, который охлаждается в теплообменнике 7, и направляется в промежуточную емкость 8.

Из кубовой части колонны насосом 9 непрерывно выводится кубовая жидкость - продукт, обогащенный труднолетучим компонентом, который охлаждается в теплообменнике 10 и напра­вляется в емкость 11.

Таким образом, в ректификационной колонне осуществляется непрерывный неравновесный процесс разделения исходной бинарной смеси на дистиллят с высоким содержанием легко­летучего компонента и кубовой остаток, обогащенный трудно­летучим компонентом.

Ректификацию многокомпонентных смесей, а они в практике встречаются чаще, чем двухкомпонентные, протекает по рассмотренной выше схеме, хотя число используемой при этом аппаратуры увеличивается.

В ректификационных установках используют главным образом аппараты двух типов: колонны со ступенчатым контактом фаз (тарельчатые) и непрерывным контактом (пленочные и насадочные).

Ректификацию многокомпонентных смесей можно проводить в различной последовательности, с использованием многих простых колонн (на одну меньше числа компонентов исходной смеси) и с использованием одной сложной колонны.

Для процесса ректификации в основном применяют тарельчатые колонны. В них устанавливают горизонтальные тарелки с устройствами, обеспечивающими хороший контакт между жидкостью и паром.

Диаметр колонны определяют в зависимости от производительности установки и скорости паров в колонне, которую выбирают в пределах 0,6 - 1,0 м/с . Находят применение ректификационные колонны различных размеров: от небольших колонн диаметром 300 - 400 мм до высокопроизводительных установок, с колоннами диаметром 6, 8, 10, 12 м и более.

Высота колонны зависит от числа тарелок и расстояния между ними. Чем меньше расстояние между тарелками, тем ниже колонна. Однако при уменьшении расстояния между тарелками увеличивается унос брызг и возникает опасность перебросав жидкости с нижних тарелок на верхние, что существенно уменьшает к.п.д. установки. Расстояние между тарелками обычно принимают в зависимости от диаметра колонны с учетом возможности ремонта и чистки колонны. Рекомендуемые расстояния между тарелками ректификационных колонн в зависимости от их диаметра приведены ниже:

Диаметр колонны, мм до 800, 800 - 1600, 1600 - 2000

Расстояние между тарелками, мм 200 -350, 350 - 400, 400 - 500

Диаметр колонны, мм от 2000 - 2400 и свыше 2400

Расстояние между тарелками, мм 500 - 600, свыше 600.

Число тарелок ректификационной колонны или высота насадки определяются технологическим расчетом; оно зависит от физико-химических свойств разделяемых компонентов, требуемой чистоты разделения и к.п.д. тарелки. Обычно ректификационные колонны имеют 10 - 30 тарелок, но колонны для разделения смесей с близкими температурами кипения насчитывают сотни тарелок и имеют соответственно высоту до 30 - 90 м .

Ректификационные колонны работают обычно при атмосферном или небольшим избыточным давлением. Ограниченное применение находят вакуумные колонны и колонны, работающие при повышенном давлении. Ректификацию под вакуумом применяют в том случае, когда хотят снизить температуру в колонне, что бывает необходимо при разделении компонентов с высокой температурой кипения или веществ, нестойких при высокой температуре. Ректификацию под повышенным давлением используют для разделения сжиженных газов и легколетучих жидкостей.

Одним из наиболее распространенных методов разделения жидких однородных смесей, состоящих из двух или большего числа компонентов, является перегонка (дистилляция и ректификация). В широком смысле перегонка представляет собой процесс, включающий частичное испарение разделяемой смеси и последующую конденсацию образующихся паров, осуществляемые однократно или многократно. В результате конденсации получается жидкость, состав которой отличается от состава исходной смеси.

Ректификация представляет собой процесс многократного частичного испарения жидкости и конденсации паров. Процесс осуществляется путем контакта потоков пара и жидкости, имеющих различную температуру, и проводятся обычно в колонных аппаратах. При каждом контакте из жидкости испаряется преимущественно низкокипящий компонент (НКК), которым обогащаются пары, а из паров конденсируются преимущественно высококипящий компонент (ВКК), переходящий в жидкость. Такой двусторонний обмен компонентами, повторяемый многократно, позволяет получить, в конечном счете, пары, представляющие собой почти чистый НКК. Эти пары после конденсации в отдельном аппарате дают дистиллят (ректификат) и флегму - жидкость, возвращаемую для орошения колонны и взаимодействия с поднимающимися парами. Пары получают путем частичного испарения снизу колонны остатка, являющегося почти чистым ВКК.

Процессы ректификации осуществляются в аппаратах, технологическая схема которых зависит от назначения аппарата и давления в нем, а конструкция - от способа организации контакта фаз.

При ступенчатом осуществлении процесса ректификации в колонных аппаратах контакт пара и жидкости может происходить в противотоке (на тарелках провального типа), в перекрестном токе (на колпачковых тарелках), в прямотоке (струйные тарелки).

Если процесс ректификации осуществляется непрерывно во всем объеме колонного аппарата, то контакт пара и жидкости при движении обеих фаз может происходить только в противотоке. Современные ректифицирующие аппараты можно классифицировать в зависимости от технологического назначения, давления и внутреннего устройства, обеспечивающего контакт между паром и жидкостью.



По технологическому назначению ректификационные аппараты подразделяются на колонны атмосферно-вакуумных установок, термического и каталитического крекингов, вторичной перегонки нефтепродуктов, а также для ректификации газов, стабилизации легких нефтяных фракций и т.д.

К современным ректификационным аппаратам предъявляются следующие требования: высокая разделительная способность и производительная способность, достаточная надежность и гибкость в работе, низкие эксплуатационные расходы, небольшой вес и простота, техничность конструкции.

Последние требования не менее важны чем первые, поскольку они не только определяют капитальные затраты, но и в значительной мере влияют на величину, эксплутационных расходов, обеспечивают легкость и удобства изготовления аппарата, монтажа и демонтажа, ремонта, контроля, испытания, а также безопасность эксплуатации и пр.

Кроме перечисленных выше требований ректификационные аппараты должны отвечать также требованиям государственных стандартов, ведомственных нормалей и инспекций Гостехнадзора.

Технологическая схема аппарата зависит от состава разделяемой смеси, требований к качеству получаемых продуктов, от возможностей уменьшения энергетических затрат, назначения аппарата, его места в технологической цепочке всей установки и от многих других факторов.

Процесс ректификации жидких смесей осуществляется на ректификационных установках, состоящих из нескольких аппаратов. Рассмотрим принцип разделения двухкомпонентной смеси ректификацией на примере работы подобной установки (рис. 10.1). Подлежащая разделению смесь непрерывно подается в ректификационную колонну через ввод, расположенный несколько выше середины корпуса колонны. Введенная жидкая смесь опускается по контактным устройствам (тарелкам) в нижнюю часть колонны, называемую кубом. Навстречу потоку жидкости поднимается пар, образующийся в результате кипения жидкости в кубе колонны. Образующиеся пары содержат в основном НКК и некоторое количество ВКК. При взаимодействии пара с жидкостью на тарелках колонны ВКК конденсируется и уносится вниз колонны потоком жидкости. За счет этого в поднимающихся парах возрастает количество НКК . Таким образом, при подъеме паров они обогащаются НКК , в то время как жидкость, стекающая вниз, обогащается ВКК .

Исходная смесь из промежуточной емкости 1 центробежным насосом 2 подается в теплообменник 3, где подогревается до температуры кипения. Нагретая смесь поступает на разделение в ректификационную колонну 5 на тарелку питания, где состав жидкости равен составу исходной смеси. Стекая вниз по колонне, жидкость взаимодействует с под­нимающимся вверх паром, образующимся при кипении кубовой жидкости в кипятильнике 4. Начальный состав пара примерно равен составу кубового остатка, т. е. обеднен легколетучим компонентом. В результате массообмена с жидкостью пар обо­гащается легколетучим компонентом

Рис. 10.1. Принципиальная схема ректификационной установки:

1 - ёмкость для исходной смеси; 2, 9 - насосы; 3- теплообменник- подогреватель исходного сырья; 4 – кипятильник; 5 – ректификационная колонна; 6 – дефлегматор; 7 – холодильник дистиллята; 8 – емкость для сбора дистиллята; 10 – холодильник кубовой жидкости; 11 – емкость для кубовой жидкости.

Для более полного обо­гащения верхнюю часть колонны орошают в соответствии с за­данным флегмовым числом жидкостью (флегмой), которая получается в дефлегматоре 6 путем конденсации пара, выходящего из колонны. Часть конденсата выводится из де­флегматора в виде готового продукта разделения - дистиллята, который охлаждается в теплообменнике 7, и направляется в промежуточную емкость 8.

Из кубовой части колонны насосом 9 непрерывно выводится кубовая жидкость - продукт, обогащенный труднолетучим компонентом, который охлаждается в теплообменнике 10 и напра­вляется в емкость 11.

Таким образом, в ректификационной колонне осуществляется непрерывный неравновесный процесс разделения исходной бинарной смеси на дистиллят с высоким содержанием легко­летучего компонента и кубовой остаток, обогащенный трудно­летучим компонентом.

Ректификацию многокомпонентных смесей, а они в практике встречаются чаще, чем двухкомпонентные, протекает по рассмотренной выше схеме, хотя число используемой при этом аппаратуры увеличивается.

В ректификационных установках используют главным образом аппараты двух типов: колонны со ступенчатым контактом фаз (тарельчатые) и непрерывным контактом (пленочные и насадочные).

Ректификацию многокомпонентных смесей можно проводить в различной последовательности, с использованием многих простых колонн (на одну меньше числа компонентов исходной смеси) и с использованием одной сложной колонны.

Для процесса ректификации в основном применяют тарельчатые колонны. В них устанавливают горизонтальные тарелки с устройствами, обеспечивающими хороший контакт между жидкостью и паром.

Диаметр колонны определяют в зависимости от производительности установки и скорости паров в колонне, которую выбирают в пределах 0,6 - 1,0 м/с . Находят применение ректификационные колонны различных размеров: от небольших колонн диаметром 300 - 400 мм до высокопроизводительных установок, с колоннами диаметром 6, 8, 10, 12 м и более.

Высота колонны зависит от числа тарелок и расстояния между ними. Чем меньше расстояние между тарелками, тем ниже колонна. Однако при уменьшении расстояния между тарелками увеличивается унос брызг и возникает опасность перебросав жидкости с нижних тарелок на верхние, что существенно уменьшает к.п.д. установки. Расстояние между тарелками обычно принимают в зависимости от диаметра колонны с учетом возможности ремонта и чистки колонны. Рекомендуемые расстояния между тарелками ректификационных колонн в зависимости от их диаметра приведены ниже:

Диаметр колонны, мм до 800, 800 - 1600, 1600 - 2000

Расстояние между тарелками, мм 200 -350, 350 - 400, 400 - 500

Диаметр колонны, мм от 2000 - 2400 и свыше 2400

Расстояние между тарелками, мм 500 - 600, свыше 600.

Число тарелок ректификационной колонны или высота насадки определяются технологическим расчетом; оно зависит от физико-химических свойств разделяемых компонентов, требуемой чистоты разделения и к.п.д. тарелки. Обычно ректификационные колонны имеют 10 - 30 тарелок, но колонны для разделения смесей с близкими температурами кипения насчитывают сотни тарелок и имеют соответственно высоту до 30 - 90 м .

Ректификационные колонны работают обычно при атмосферном или небольшим избыточным давлением. Ограниченное применение находят вакуумные колонны и колонны, работающие при повышенном давлении. Ректификацию под вакуумом применяют в том случае, когда хотят снизить температуру в колонне, что бывает необходимо при разделении компонентов с высокой температурой кипения или веществ, нестойких при высокой температуре. Ректификацию под повышенным давлением используют для разделения сжиженных газов и легколетучих жидкостей.

ВВЕДЕНИЕ

Ректификация известна с начала 19 века как один из важнейших технологических процессов главным образом нефтяной и спиртовой промышленности. В настоящее время ректификацию всё шире применяют в самых различных областях химической технологии, где выделение компонентов в чистом виде имеет весьма важное значение в производствах органического синтеза: изотопов, полимеров, полупроводников и различных других веществ высокой частоты.

В начале 2003 года в Нью-Йорке была официально зарегистрирована технология Линас.

Экономические и технические преимущества технологии Линас по сравнению с традиционными ректификационными технологиями подтверждены и проверены на стабильно работающих промышленных нефтеперерабатывающих установках Линас.

Преимущества, которые дает новая колонна ЛИНАС при промышленной эксплуатации:

Стабильно высокое качество получаемых продуктов и устойчивость работы колонны Линас при ведении технологического процесса.

При равномерной подаче сырья и тепла на установку технологические параметры колонны могут не меняться в течение нескольких месяцев работы. При этом качество получаемых продуктов отвечает самым строгим требованиям. Отклонения фракционного состава продуктов при анализе отличалось не более чем на 1-2оС в течение нескольких месяцев работы.

Использование ряда оригинальных решений в конструкции колонны Линас для первичной нефтеперегонки привело к тому, что качество прямогонного бензина, дизельного топлива и мазута даже при различных технологических режимах находится на высоком уровне.

Высокая степень разделения при небольшой высоте колонны.

Ректификационные колонны Линас отличаются очень высокой эффективностью разделения компонентов исходной смеси. Это позволяет получать результаты, не достижимые даже на самых современных НПЗ.
Высокая степень разделения в нефтеперерабатывающей колонне дает уникальную возможность увеличения выхода дизельного топлива. Это достигается за счет смещения границы деления между бензиновой и дизельной фракциями. В зависимости от фракционного состава нефти выход дизельной фракции может быть увеличен на 5-12% от общей производительности установки. А это значительно улучшает экономику НПЗ. На этой основе разработан модифицированный вариант нефтеперерабатывающей установки Линас с повышенным выходом дизельного топлива.

Уникальная применимость в вакуумных процессах.

Одной из ключевых особенностей технологии Линас является низкое гидравлическое сопротивление ректификационной колонны.

Традиционные колонны имеют значительное гидравлическое сопротивление. Применение их в вакуумной ректификации зачастую приводит к ситуации, когда давление по высоте колонны отличается в десятки и сотни раз. Назвать такой процесс вакуумным можно лишь с большой натяжкой.

Низкое гидравлическое сопротивление делает колону Линас уникально незаменимой для процессов вакуумной ректификации.

Резкое снижение пожаро- и взрывоопасности при возникновении аварийных ситуаций.

В силу очень небольшого количества вещества в колонне Линас резко уменьшается пожаро- и взрывоопасность всей ректификационной установки Линас.

Неоднократные отключения электроэнергии в процессе пусконаладки при работе на максимальном технологическом режиме не приводили к возникновению аварийных ситуаций. Конструкция колонны и технологической обвязки аппаратов в подобной ситуации предотвращают возможность аварии независимо от состояния системы противоаварийной защиты.

В процессе пусконаладочных работ были зафиксированы случаи подачи на установку сырья с содержанием воды от 12% (обводненное сырье) до 100% (вода из товарно-сырьевого парка после гидроиспытаний). Попадание воды в печь нагрева сырья и в колонну на максимальном режиме не приводило к возникновению аварийной ситуации.

Повышенная эксплуатационная надежность оборудования и устойчивость к образованию загрязнений.

После эксплуатации в течение 3,5 лет был произведен детальный осмотр всех элементов колонны Линас. Внутри колонны не были обнаружены следы отложений или коррозии. Это объясняется наличием постоянно стекающей пленки жидкой флегмы по поверхностям массообмена трубок и особенностью конструкции всей колонны.

1. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

1.1 Теоретические основы процесса ректификации

Ректификация - это процесс разделения однородных жидких смесей, не находящихся в термодинамическом равновесии, на компоненты в зависимости от их летучести при противоточном взаимодействии жидкости и пара.

Процесс осуществляется путем контакта потоков пара и жидкости, имеющих различную температуру, и проводится обычно в колонных аппаратах. При каждом контакте из жидкости испаряется преимущественно легколетучий компонент (ЛЛК), которым обогащаются пары, а из паров конденсируется преимущественно тяжелолетучий компонент (ТЛК), переходящий в жидкость. Такой двусторонний обмен компонентами, повторяемый многократно, позволяет получить, в конечном счете, пары, представляющие собой почти чистый ЛЛК. Эти пары после конденсации в отдельном аппарате дают дистиллят и флегму - жидкость, возвращаемую для орошения колонны и взаимодействия с поднимающимися парами. Пары получают путём частичного испарения снизу колонны остатка, являющегося почти чистым ТЛК.

Физическая сущность ректификации

Исходная смесь, состоящая из ЛЛК и ТЛК, подаётся в ректификационную колонну на тарелку питания при температуре кипения. При подаче на тарелку исходная смесь растекается по ней и стекает вниз. В куб ректификационной колонны подводится теплота, за счёт которой жидкость нагревается, испаряется и образует восходящий поток пара. При контакте пара со стекающей исходной смесью, часть пара конденсируется, за счёт этого в нём увеличивается концентрация ТЛК. Часть жидкости испаряется, причём в пар переходит ЛЛК, а в жидкости остаётся ТЛК. В результате этого пар на выходе из ректификационной колонны представляет собой стопроцентный ЛЛК, а жидкость на выходе снизу колонны - ТЛК.

Для создания потока жидкости, стекающей сверху колонны, часть конденсата (верхнего продукта), называемая флегмой, возвращается в колонну, а другая часть выводится в виде верхнего продукта.

Процесс ректификации может осуществляться непрерывно и периодически под атмосферным и избыточным давлением, а так же под вакуумом.

Движущей силой массообменных процессов является разность концентраций между компонентами различных фаз.

Высоту Н абсорбера рассчитывают по общему уравнению массопередачи. Например, если движущая сила выражена в концентрациях газовой фазы, то

Н = М/(Ку*а*S*∆Уср)

Где М - количество поглощаемого газа; Ку - коэффициент массопередачи; а - удельная поверхность контакта фаз; S - площадь сечения колонны; ∆Уср - средняя движущая сила процесса.

1.2 Описание технологической схемы для непрерывной ректификационной колонны

Состоит из ректификационного массообменного аппарата - ректификационной колонны, представляющей собой вертикальный цилиндрический корпус, внутри которого расположены контактные устройства (насадка, тарелки). Снизу вверх по колонне движется поток пара, поступающий в ее нижнюю часть из испарителя, находящегося рядом или под самой колонной. Поступающий в колонну пар по составу представляет собой практически чистый ТЛК. На каждой тарелке при его перемещении по колонне происходит конденсация поднимающегося пара и за счет теплоты его конденсации - испарение находящегося в этой зоне ЛЛК.

Таким образом, происходит постоянное удаление из выходящего пара ТЛК и обогащение его ЛЛК. В результате из верхней части колонны выгружаются пары практически чистого ЛЛК, который конденсируется в дефлегматоре. Получается, жидкость разделяется в делителе на 2 потока. Первый поток - флегма, возвращается назад в колонну, создавая тем самым нисходящий поток жидкости, состоящий практически из чистого ЛЛК. Стекая вниз по колонне и взаимодействуя с восходящим паром, флегма постоянно обогащается конденсирующимся из нее ТЛК, заменяющим постоянно испаряющийся ЛЛК. В результате жидкость, достигающая нижней части колонны и поступающая в испаритель, состоит практически из низколетучего компонента.

Подаваемую на разделение исходную смесь подогревают до температуры кипения в теплообменнике и подают в колонну, в зону, положение которой определяют в результате расчета контактного ректификационного аппарата.

Зона питания делит колонну на 2 части. Верхняя, или укрепляющая, часть обеспечивает наибольшее укрепление поднимающихся паров, то есть обогащение их ЛЛК. Нижняя, или кубовая (исчерпывающая) часть, обеспечивает наибольшее удаление из жидкости ЛЛК.

Второй поток жидкости, получаемый в дефлегматоре и называемый дистиллятом, поступает в холодильник - теплообменник, а затем в сборник, откуда перекачивается в качестве целевого продукта насосом.

Жидкость, выходящая из нижней части колонны, также делится на 2 потока. Первый возвращается в испаритель, откуда в виде пара подается назад в колонну. Второй, называемый кубовым остатком, после охлаждения в холодильнике направляется в сборник.

спирт вода насадочный колонна

1.3 Устройство, принцип действия ректификационных колонн

Ректификационная колонна имеет цилиндрический корпус, внутри которого установлены контактные устройства в виде тарелок или насадок. Снизу вверх по колонне движутся пары, поступающие в нижнюю часть аппарата из кипятильника, который находится вне колонны, т. е является выносным, либо размещается непосредственно под колонной. Следовательно, с помощью кипятильника создается восходящий поток пара. Пары проходят через слой жидкости на нижней тарелке, которую будем считать первой, ведя нумерацию тарелок условно снизу вверх. Пусть концентрация жидкости на первой тарелке равна х1 (по низкокипящему компоненту), а ее температура t1. В результате взаимодействия между жидкостью и паром, имеющим более высокую температуру, жидкость частично испаряется, причем в пар переходит преимущественно низколетучий компонент. Поэтому на следующую (вторую) тарелку поступает пар с содержанием низколетучего компонента y1>x1.

Испарение жидкости на тарелке происходит за счет тепла конденсации пара. Из пара конденсируется и переходит в жидкость преимущественно тяжелолетучий компонент, содержание которого в поступающем на тарелку паре выше равновесного с составом жидкости на тарелке. При равенстве теплот испарения компонентов бинарной смеси для испарения 1 моль низколетучего компонента необходимо сконденсировать 1 моль тяжелолетучего компонента, т. е фазы на тарелке обмениваются эквимолекулярными количествами компонента.

На второй тарелке жидкость имеет состав х2 , содержит больше низколетучего компонента, чем на первой (х2>х1) , и соответственно кипит при более высокой температуре (t2х2 , и т. д.

Таким образом, пар, представляющий собой на выходе из кипятильника почти чистый ТЛК, по мере движения вверх все более обогащается низкокипящим компонентом и покидает верхнюю тарелку колонны в виде почти чистого низколетучего компонента, который практически полностью переходит в паровую фазу на пути пара от кипятильника до верха колонны.

На некотором расстоянии от верха колонны к жидкости из дефлегматора присоединяется исходная смесь, которая поступает на так называемую питающую тарелку колонны. Для того чтобы уменьшить тепловую нагрузку кипятильника, исходную смесь обычно предварительно направляют в подогреватель до температуры кипения жидкости на питающей тарелке.

Питающая тарелка как бы делит колонну на две части, имеющие различное назначение. В верхней части (от питающей до верхней тарелки) должно быть обеспечено, возможно, большее укрепление паров, т. е обогащение их НК с тем, чтобы в дефлегматор направлялись пары, близкие по составу к чистому НК. Поэтому данная часть колонны называется укрепляющей. В нижней части (от питающей до нижней тарелки) необходимо в максимальной степени удалить из жидкости НК, т. е исчерпать жидкость для того, чтобы в кипятильник стекала жидкость, близкая по составу к чистому ТЛК. Соответственно, эта часть колонны называется исчерпывающей.

1.4 Устройство, принцип действия насадочной ректификационной колонны

Насадочная ректификационная колонна, более обычная по конструкции, представляет собой цилиндрический вертикальный аппарат, заполненный по всей высоте либо на отдельных участках так именуемой насадкой определенных размеров и конфигурации телами из инертных материалов.

Колонна состоит из двух частей: верхней - укрепляющей и нижней - исчерпывающей. Внутри каждой части колонны находится решетка, на которую укладывается насадка. Сверху укрепляющей части колонны установлены приспособления для кипятильника поступают под решетку исчерпывающей части колонны и проходят по ней снизу вверх; жидкость, наоборот, протекает сверху вниз. В результате контакта паров с жидкостью происходит постепенное обогащение пара ЛЛК, а жидкости - ТЛК.

Пройдя колонну, пары направляются, как обычно, в дефлегматор, а жидкость из низа исчерпывающей части колонны частично отбирается в виде кубового остатка, содержащего относительно чистый менее летучий компонент, а частично идет в кипятильник. Насадку загружают в колонну через верх, а для выгрузки ее в обеих частях колонны устроены специальные люки.

Насадки представляют собой твердые тела различной формы, которые загружают в корпус колонны в навал или укладывают определенным образом. Развитая поверхность насадок обуславливает значительную поверхность контакта пара и жидкости.

Для заполнения насадочных колонн широко применяют кольца Рашига, изготовленные из различных материалов, что обеспечивает универсальность их практического использования. Однако кольца Рашига обладают относительно невысокой производительностью и сравнительно высоким сопротивлением. Последнее ограничивает их применение для вакуумных процессов.

Созданные в последние годы различные модификации колец Рашига - кольца Паля, кольца Борад и другие позволили получить лучшие рабочие характеристики, чем при кольцах Рашига. В связи с необходимостью создания насадок с низким гидравлическим сопротивлением были разработаны различные варианты регулярной укладки насадочных тел, блочные насадки, а также насадки из сеток различных конструкций.

Насадку укладывают на опорные распределительные решетки и плиты. Свободное сечение таких устройств должно быть по возможности больше и приближаться к величине свободного объема насадки. Чтобы насадка работала эффективно, поверхность насадки должна хорошо смачиваться жидкостью.

В насадочных колоннах фактически нереально достигнуть равномерного распределения стекающей сверху вниз воды по всем поперечным сечениям аппарата. В особенности неравномерно распределяется жидкость при огромных поперечниках колонн. Именно потому контактирование фаз в их недостаточно, вследствие чего же тяжело добиться точного разделения.

В текущее время насадочные колонны для ректификации используют редко, их вытеснили тарельчатые колонны.

2. РАСЧЁТ РЕКТИФИКАЦИОННОЙ КОЛОННЫ

2.1 Определение материального баланса колонны

А) общий материальный баланс mf=mp+mw=1,42 кг/с, где mf - расход исходной смеси, кг/с mp - расход дистиллята, кг/с mw - расход кубового остатка, кг/с Б) частный материальный баланс по легкокипящему компоненту

mf*хf=mp*xp+mw*хw

mf*xf=(mf-mw)*хp+mw*xw

mw=mf*[(xp-xf)/(xp-хw)]=1,42*[(80-20)/(80-2)]=1,09 кг/с mp = mf - mw = 1,42 - 1,09 = 0,33 кг/с

2.2 Определение оптимального рабочего флегмового числа

Для расчетов сосчитали массовые доли компонента в мольные, используя формулу

х=(х/Ма)/[(х/Ма)+(1-х/Мб)],кмоль/кмоль(*100=мольные%)

где Ма, Мб - молярные массы соответственно легколетучего (спирта) и тяжелолетучего компонента (воды)

xf=(xf/Ma)/(xf/Ma)+(1-xf/Mб)= (0,2/46)/(0,2/46)+(1-0,2/18)*100=8,9 мольн. %

xp=(xp/Ma)/(xp/Ma)+(1-хp/Mб)=(0,8/46)/(0,8/46)+(1-0,8/18)*100=60,71 мольн. %w=(xw/Ma)/(xw/Ma)+(1-xw/Мб)=(0,02/46)/(0,02/46)+(1-0,02/18)*100=0,7 мольн. %

Этанол - вода

X - конц-ция ЛЛК в жид-ти

Y - конц-ция ЛЛК в паре

Т - тем-ра кипения двойной смеси


Определяем минимальное флегмовое число

Rmin = (Хр-Yf)/(Yf - Xf)=(60,7 1- 42)/(42 - 8,9)=18,71/33,1=0,57

Оптимальное рабочее флегмовое число определяем по формуле:

R = Rmin*=0,57*1,7=0,97

Где - коэффициент избытка флегмы, принимаем 1,6-1,8

2.3 Определение число теоретических ступеней

Строим рабочую линию колонны. Т.к. колонна состоит из двух частей:

исчерпывающей и укрепляющей, то линию строим по четырем точкам.

Уравнение линии процесса в укрепляющей части колонны:

Y = R*x/(R+l) + xp/(R+l)

т.А х = хр = 60, 71 у = хр = 60,71

т.В х = 0 y=xp/R+l=60,71/0,97+1=30,82

Соединив эти 2 точки, получаем рабочую линию укрепляющей части колонны.

Уравнение линии процесса в исчерпывающей части колонны

Y = [(R+F)/(R+l)]*x-*xw

F, W - относительные расходы исходной смеси и кубового остатка, т.е. отнесенные на

моль дистиллята

т. С х = xf = 8,9 до пересечения с линией АВ

т. Д х = xw = 0,7 у = хw = 0,7

Соединив эти две точки, получаем рабочую линию исчерпывающей части колонны.

АСД - рабочая линия колонны

Подсчитываем число теоретических ступеней отдельно в каждой части колонны

ЧТСукр, ЧТСисч, ∑ЧТС = ЧТСукр + ЧТСисч=4,5+4=8,5

2.4 Определение теплового баланса

Для выполнения тепловых расчетов определяем температуры кипения и теплоемкости исходной смеси, дистиллята и кубового остатка. Строим график температурной зависимости Т = f (X).

Построив график, получили: Tf=87 0C, Tw=96,1 0C, Tp=79 0C

По полученным температурам кипения для исходной смеси, дистиллята и кубового остатка находим теплоемкости ЛЛК (Са) и ТЛК (Сб). Теплоемкость смеси при каждой температуре находим по формуле:

Ссм= Са*х -Сб*(1-х)

Таким образом, итоговым результатом должны стать значения Ссмf, Ссмр, Ссмw

Св=1,1*4190=4609 Дж/(кг*К)

Ссмf=3310,1*0,089+4609(1-0,089)=294,6+4198,8=4493,2 Дж/(кг*К)

При Tw=96,1 0C

Ссп=0,83*4190=3477,7 Дж/(кг*К)

Св=1*4190=4190 Дж/(кг*К)

Ссмw=3477,7*0,007+4190(1-0,007)=24,34+4160,7=4185,04 Дж/(кг*К)

Ссп=0,78*4190=3268,2 Дж/(кг*К)

Св=1,05*4190=4399,5 Дж/(кг*К)

Ссмр=3288,2*0,6071+4399,5(1-0,6071)=1984,12+1728,6=3712,72 Дж/(кг*К)

Составляем уравнение теплового баланса:

Приход теплоты:

А) с исходной смесью в колонну

Qf=mf* Cсмf *Tf=1,42 *4493,4*87=555114,63 Дж

Б) с флегмой

QR=mR*CсмR*TR=0,3201 *3712,72*79=93887 Дж

mR=R*mp=0,97*0,33=0,3201 кг/с,

CсмR=Ссмр=3712,72, TR = Тр =790C

В) с греющим паром

Qг.п. =D*Iг.п. =D*2730000= 2730*103*D Дж

Принимаем греющий пар давлением 3 кг/с*см для всех расчетов с температурой

Тг.п. = 132,9 °С, Iг.п. = 2730 кДж/кг, rг.п.=2171 кДж/кг

Расход теплоты:

A) с паром из колонны

Qп"=m"п*I‘п=0,6501*294727,87=191602,6Дж

где I "п - энтальпия пара в верхней части колонны

I "п = rп + Cp*tp=1422,99+3712,72*79=294727,87 Дж/кг, rп - теплота парообразования, рассчитывается:

rп=ra*x+rб*(1-x)=848,1*0,6071+2311,22*(1-0,6071)=514,9+908,09=1422,99 Дж/кг

Для точного расчета применяем метод интерполяции:

rсп=(r2-r1)/(t2-t1)*[(t-t1)+г1]=(812,9-879,9)/(100-60)*[(79-60)+879,9]= -1,675*19+879,9=848,1 Дж/кг

rв=2311,22 Дж/кг

m"n = mp + mR =0,33+0,3201= 0,6501 кг/с

Б) с кубовым остатком

Qw=mw* Cсмw *Tw=1,09*4185,04*96,1=438378,8 Дж

) с конденсатом греющего пара

конд=D*Cв*Tг.п.=D*4,19*103*132,9=556851*D Дж

Г) Тепловые потери (составляют 5% от тепла, отдаваемого греющим паром). Потери обозначаются Qnoт, и учитываются в тепловом балансе. Из уравнения общего тепловою баланса находим расход греющего пара D.

Qпот=Qг.п*0,05=D*2730000*0,05=136500*D

Qf +QR+Qг.п.=Qn’+Qw+Qконд+Qпот

63+93887+2730000*D=191602,6+43878,8+556851*D+136500*D

2.5 Определение диаметра ректификационной колонны

Определяем расход и плотность пара в верхнем и нижнем сечениях колонны

Vc = mc /ρс

Где Vc - объемный расход пара, м3/с

mс - массовый расход пара, кг/с

ρп - плотность пара, кг/м3

ρп=М*Р*Т0/22,4*Р0*Т

Где М - молярная масса смеси, кг/кмоль

Р, Т - рабочие давление и температура, кг*с/ см2, К

Р0,Т0 - давление и температура при нормальных условиях

Р0= 1 кг*с/см2= 101,3 кПа

Верхнее сечение:

m"n=mp*(R+l)=0,33*(0,97+1)=0,6501кг/с

М"см=Ма*хр+Мб*(1-хр)=46*0,6071+18*(1-0,6071)=35мольн.% Р" = Ратм = 1 кг*с/см2=98100 Па

ρ"п=Мсм*Р*Т0/22,4*Р0*Тр=35*98100*273/22,4*101300*352=1,17 кг/м3

V"с=m‘n/ρ’n=0,6501/1,17=0,56 м3/с

Нижнее сечение:

Массовый расход пара находим из теплового баланса кипятильника:

D*rг.п. = m"п * г"п""п=(D*rг.п.)/ r""п= 0,045*2171*103/2258,07*103=0,043 кг/с

г"п находим методом интерполяции для каждого компонента смеси при температуре кубового остатка (Tw).

r""сп=[(812,9-879,9)/(100-60)]*(96,1-60)+879,9= -1,675*36,1+879,9=819,43 кДж

r""в=[(2258,4-2359)/(100-60)]*(96,1-60)+2359=-2,515*36,1+2359=2268,21 кДж

r""п= r´´сп*xw+ r´´в*(1-xw)=819,43*0,007+2268,21(1-0,007)=2258,07*103 Дж

М"см=Мсп*xw+Mв(1-xw)=46*0,007+18*(1-0,007)=18,2 мольн. %

ρ"п=Мсм"*Р"*Т0/22,4*Р0*Тw=18,2*98950*273/22,4*101300*369,1=0,59 кг/м3

Р"=Р" + ∆P=98100+850=98950 Па

Где ∆Р - сопротивление со стороны тарелки (насадки)

Где ∆Рт - сопротивление одной тарелки (насадки), принимаем 100 Па

V"с=m"n/ρ"n=0,043/0,59=0,07 м3/с

Таким образом, определим диаметр ректификационной колонны в верхнем и нижнем сечениях колонны по формуле:

D = √Vс /0,785*ωп

ωп=0,8* ωр=0,8*0,7=0,56 м/с

ωр=(0,5-0,9) м/с

Dв=√0,56/0,785*0,56=1,13 м

Dн=√0,07/0,785*0,56=0,41 м

Dср=(1,13+0,41)/2=0,76 м

Выбираем ректификационную колонну с насыпной насадкой и с распределительными тарелками типа ТСН - III и перераспределительными тарелками типа ТСН - II, диаметр колонны - 800 мм, высота сепарационной части равна 800 мм, высота кубовой - 2000 мм.

2.6 Определение высоты ректификационной колонны

Нкол = Нсеп + Нкуб + 0,5 *(nсл -1) + Hнас = 0,8+2+0,5*(2,13-1)+6,8= 2,8+0,565+6,8=10,2 м

где nсл - число слоев насадки в колонне, nсл = Hнас/hсл = 6,8/3,2=2,13

hсл - высота слоя насадки, hсл = 3…5*Dкол

5 - расстояние между слоями насадки, в котором устанавливают опорные решетки и перераспределительные тарелки, м

Hнас - общая высота насадки, м

Общую высоту насадки в колонне можно рассчитать через высоту насадки, эквивалентную одной теоретической ступени (тарелки):

Hнас=ЧТС* hэкв = 8,5*0,8=6,8 м

Где ЧТС - число теоретических ступеней

hэкв - высота, эквивалентная теоретической ступени, рассчитывается по критериальному уравнению, приводимому в справочной литературе hэкв = 0,8

2.7 Расчёт насоса для подачи исходной смеси

Расчет насоса для подачи исходной смеси:

Н - высота подъема исходной смеси в колонну (определяется по чертежу ректификационной колонны в масштабе), Н=5,1 м

η- коэффициент полезного действия, примем равным 0,75

1.Определяем диаметр трубопровода по формуле:

D=√V/0,785*υ=√0,0015/0,785*2=0,031м

Где V - объемный расход исходной смеси, м3/с:

υ- скорость движения исходной смеси, м/с принимаем 0,5 - 2 м/с

V = G/ρ=1,42/964,51=0,0015 м3/с

Где ρ- плотность исходной смеси при температуре Tf

Принимаем трубу с условным диаметром

Ориентировочно определяем мощность насоса

N=V* ρ*g*H/ 1000

*η=0,0015*964,51*9,81*5,1/1000*0,75=72,4/750=0,097 кВт

По подсчитанным данным по каталогу подобрали необходимый насос


ЗАКЛЮЧЕНИЕ

В ходе выполнения данного курсового проекта были рассчитаны материальный и тепловой балансы. Выполнен конструктивный расчёт проектируемого аппарата, в ходе которого определены основные размеры проектируемой колонны:

Диаметр колонны - 800 мм

Высота колонны -10200 мм

Вычерчена графическая часть: общий вид аппарата и технологическая схема ректификационной установки.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

1. Плановский А.М., Рамм В.М., Каган С.З., Процессы и аппараты химической технологии. - Москва: Химия, 1968 г.

2. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессы и аппараты химической технологии. - Москва: Химия, 1981 г.

Иоффе И.Л. Проектирование процессов и аппаратов химической технологии. - Ленинград: Химия, 1991 г.

Романов П.Г., Курочкина М.И., Мозжерин Ю.А., Смирнов Н.Н. Процессы и аппараты химической промышленности. - Ленинград: Химия, 1989 г.

Приготовление самогона и спирта для личного использования
абсолютно легально!

После прекращения существования СССР новое правительство остановило борьбу с самогоноварением. Уголовная ответственность и штрафы были отменены, а из УК РФ изъята статья о запрете производства спиртосодержащей продукции в домашних условиях. По сей день не существует ни одного закона, запрещающего нам с Вами заниматься любимым хобби – приготовлением алкоголя в домашних условиях. Об этом свидетельствует Федеральный закон от 8.07.1999 № 143-ФЗ «Об административной ответственности юридических лиц (организаций) и индивидуальных предпринимателей за правонарушения в области производства и оборота этилового спирта, алкогольной и спиртосодержащей продукции» (Собрание законодательства Российской Федерации, 1999, N 28, ст. 3476).

Выдержка из Федерального закона РФ:

«Действие настоящего Федерального закона не распространяется на деятельность граждан (физических лиц), производящих не в целях сбыта продукцию, содержащую этиловый спирт».

Самогоноварение в других странах:

В Казахстане в соответствии с Кодексом РК Об административных правонарушениях от 30 января 2001 года N 155 предусмотрена следующая ответственность. Так, согласно статье 335 «Изготовление и сбыт алкогольных напитков домашней выработки» незаконное изготовление в целях сбыта самогона, чачи, тутовой водки, браги и других алкогольных напитков, а равно сбыт указанных алкогольных напитков влечет штраф в размере тридцати месячных расчетных показателей с конфискацией алкогольных напитков, аппаратов, сырья и оборудования для их изготовления, а также полученных от их реализации денег и иных ценностей. Однако законом не запрещается приготовление алкоголя в личных целях.

В Украине и Белоруссии дела обстоят иначе. Статьями №176 и №177 Кодекса Украины об административных правонарушениях предусмотрены наложения штрафов в размере от трех до десяти не облагаемых налогом МРОТ за изготовление и хранение самогона без цели сбыта, за хранение без цели сбыта аппаратов* для его выработки.

Практически слово в слово повторяет эту информацию статья 12.43. «Изготовление или приобретение крепких алкогольных напитков (самогона), полуфабрикатов для их изготовления (браги), хранение аппаратов для их изготовления» в Кодексе Республики Беларусь об административных правонарушениях. Пункт №1 сообщает: «Изготовление физическими лицами крепких алкогольных напитков (самогона), полуфабрикатов для их изготовления (браги), а равно хранение аппаратов*, используемых для их изготовления, – влекут предупреждение или наложение штрафа в размере до пяти базовых величин с конфискацией указанных напитков, полуфабрикатов и аппаратов».

*Приобретать самогонные аппараты для домашнего использования все же можно, так как второе их назначение – дистилляция воды и получение компонентов для натуральных косметических средств и парфюмерии.

Ректификация — процесс разделения смесей взаимно растворимых компонентов, различающихся по температурам кипения, путем противоточного многократного контактирования неравновесных жидкости и пара. Контактирование осуществляется, как правило, в колонных аппаратах на тарельчатых или насадочных контактных устройствах противоточно — пар снизу вверх, жидкость сверху вниз.

Колонный аппарат представляет собой вертикальную стальную трубу с размещенными внутри контактными устройствами. В тарельчатых колоннах контакт происходит ступенчато на отдельных ступенях, называемых тарелками (ситчатые, колпачковые, клапанные и т.д.), обычно путем барботажа пара сквозь слой жидкости или путем распылительного перемешивания, или другим способом, обеспечивающим максимально эффективный тепло- и массообмен. В насадочных колоннах контакт осуществляется непрерывно между паром и жидкой пленкой в слое насадки с развитой поверхностью, которой заполнена колонна (щебень, кольца, пружины, сетки и т.п.).

Жидкость, относительно богатая легкокипящими компонентами, имеющая относительно более низкую температуру, поступает на контактное устройство сверху. Пар, богатый высококипящими компонентами, имеющий более высокую температуру, поступает на контактное устройство снизу. На контактном устройстве жидкость и пар стремятся к равновесию путем тепло- и массообмена. Если равновесие между паром и жидкостью, покидающими контактное устройство достигается, то такое контактное устройство называется теоретической ступенью или теоретической тарелкой.

Простая дистилляция («самогонный аппарат») обеспечивает однократный хороший контакт жидкости и пара и эквивалентна одной теоретической ступени. Реальные тарелки промышленных колонн имеют эффективность 0,3...0,8 теоретической ступени. Для насадочных колонн есть величина, называемая высотой эквивалентной теоретической тарелке, — это высота слоя насадки, массообменная эффективность которого эквивалентна одной теоретической ступени. Эта высота может быть 100...600мм. На контактных устройствах пар обогащается низкокипящим компонентом, а жидкость высококипящим. Проходя последовательно ряд ступеней, жидкость и пар достигают заданных концентраций компонентов. Вверху колонны концентрируется низкокипящие компоненты, внизу — высококипящие. Наращивая число ступеней, можно получить любую заданную четкость разделения компонентов. По высоте колонны концентрации компонентов меняются иногда весьма нелинейно.

В аппаратах непрерывной ректификации сырье вводят примерно на середине высоты колонны, т.е. на ту тарелку, где концентрации компонентов примерно равны таковым у сырья. Сверху колонны отбирают дистиллят, богатый низкокипящими компонентами. Снизу отбирают остаток, богатый высококипящими компонентами. Пары с верхней тарелки колонны охлаждаются в конденсаторе, часть в виде паров или жидкости отбирается как дистиллят, остальное возвращается в колонну в виде жидкости. Жидкость с нижней тарелки нагревается в кипятильнике, часть жидкости отбирается как нижний продукт (остаток), остальное в виде пара возвращается в колонну.

Отношение массового расхода жидкости, поступающей из конденсатора в колонну, к массовому расходу дистиллята называется флегмовым числом . Отношение массового расхода паров из кипятильника к массовому расходу остатка называется паровым числом . Эти числа характеризуют режим работы верхней (выше питания) и нижней (ниже питания) секций колонны. Чем выше флегмовое (и паровое) число, тем легче (меньшим числом ступеней) достигается заданная четкость раделения смеси ректификацией, но также возрастают удельные затраты энергии и уменьшается производительность колонны. Флегмовое (и паровое) число не может быть меньше определенного минимального, при котором заданная четкость ректификации не достигается при сколь угодно большом числе ступеней.

При периодической ректификации в кипятильник соответствующего объема (называемый кубом колонны) загружается порция сырья, в процессе ректификации сырье не добавляют и состав кубового остатка непрерывно меняется от состава сырья до заданного высококипящего остатка. Соответственно сверху колонны отбирают дистиллят изменяющегося по времени состава. Если число компонентов смеси невелико (2...5), а количество ступеней и флегмовое число достаточны для сравнительно четкого разделения, то состав дистиллята и температура на верхней тарелке изменяется ступенчато, вначале дистиллят состоит из концентрированного самого низкокипящего компонента (назовем его первым компонентом), затем следует короткий переходный период, когда дистиллят представляет собой смесь переменного состава, в которой концентрация первого компонента убывает, а концентрация второго компонента возрастает, далее дистиллят состоит из концентрированного второго компонента, и т.д. для всех компонентов. Дистиллят переходных периодов традиционно называют bad cuts, его смешивают со следующей порцией сырья.

Если четкость разделения невелика и/или количество компонентов велико (нефтяные смеси), то ступенчатость состава дистиллята становится незаметной, состав дистиллята и температура на верхней тарелке меняются непрерывно. Многокомпонентные смеси могут быть разделены на индивидуальные компоненты повторной ректификацией узких фракций дистиллятов, содержащих уже небольшое число компонентов. Особенности ректификации нефтяных смесей обусловлены требованиями к качеству разделения на фракции и тем, что нефтяные смеси состоят из тысяч компонентов. Многокомпонентность нефтяных смесей обуславливает непрерывный состав дистиллята при периодической ректификации для любого практически достижимого числа ступеней и флегмового числа.

Качество разделения на фракции определяется по результатам простой дистилляции (стандарт ASTM D86) проб данной фракции, по температурам 5% и 95% отгона. Стандартами на соответствующие нефтепродукты определяется, что перекрытие температур 95% и 5% отгона между соседними фракциями должно быть не более 10...15С. Например, если 95% бензиновой фракции, полученной на данной колонне, отгоняется по D86 не более чем при 180С, то 5% дизельной фракции, полученной на этой же колонне, должно отгоняться по D86 не менее чем при 170С.



Статьи по теме: