Как делают солярку. Дизельное топливо в домашних условиях

Такой термин, как «биодизель», большинству понятен чисто интуитивно. Но зачастую при этом происходит определенная путаница. Ничего страшного, но все-таки лучше обойтись без нее и разобраться, что же такое биодизель.

Вернемся к ДВС

При работе в его цилиндрах происходит сгорание бензина или дизельного топлива. То и другое является продуктом переработки нефти, запасы которой ограничены, кроме того, при сжигании этих видов горючего образуются вещества, наносящие вред людям и окружающей среде. Одним из вариантов, позволяющим избежать подобного, является применение биодизеля как топлива для двигателей.

Надо пояснить, что оно собой представляет. Дело в том, что производство биодизеля основано на использовании животных жиров и растительного масла как исходного сырья. Можно провести простую аналогию – из нефти получают бензин и солярку, из масла или жира возможно получение топлива для работы ДВС.

Небольшое уточнение – в качестве горючего для работы моторов могут применяться разные вещества, например тот же самый спирт, получаемый из опилок, но в данном случае мы рассматриваем топливо именно для дизельных двигателей, а сырьем для биодизеля, так называется этот вид горючего, служат масло или остатки жира.

Как можно использовать биологическое топливо?

Использование жира и масла в качестве горючего может осуществляться такими способами:

  • Напрямую, заливая масло в бак. Недостатком такого подхода будет неполное его сгорание, смешивание со смазкой и ухудшение ее смазочных свойств, а также появление отложений на форсунках, кольцах, поршнях из-за повышенной вязкости растительного топлива.
  • Смешивая его с керосином или дизельным топливом.
  • Путем преобразования растительного масла, источником получения которого может быть рапс, кукуруза, подсолнечник и т.д., и в итоге получение биодизеля.

Наиболее сложной из упомянутых считается технология преобразования масла, но тем не менее, она настолько проста, что легко реализуется, благодаря чему можно получить биодизель в домашних условиях.

Так что же такое биодизель?

Фактически биодизель является смесью эфиров, в основном это метиловый эфир, как результат химической реакции. К его достоинствам следует отнести:

  1. растительное происхождение, благодаря возможности выращивания растений мы получаем возобновляемый источник топлива;
  2. биологическая безопасность, биодизель является экологически безвредным, его попадание в окружающую среду не наносит ей никакого вреда;
  3. меньший уровень выбросов двуокиси углерода и других отравляющих веществ;
  4. незначительное содержание серы в выхлопных газах моторов, использующих биодизель;
  5. хорошие смазочные характеристики.

По сути дела, растительное масло – это смесь эфиров с глицерином, который придает ему вязкость. Процесс производства биодизеля основан на том, что надо удалить глицерин и заменить его спиртом. Стоит отметить, что недостатком такого топлива является необходимость его подогрева при низких температурах или применения смеси биодизеля и обычной солярки.

Технология производства биодизеля

Технология производства биодизеля достаточно проста. Обычно его изготовление осуществляется из различных сортов растительного масла. Для этого может быть использован рапс, соя, кукуруза и т.д., общий список веществ, пригодных для получения исходного сырья достаточно значителен. Для производства биодизеля также подходит масло, оставшееся после приготовления пищи. Схему подобного процесса можно увидеть на приведенном рисунке

Раз мы рассматриваем топливо растительного происхождения, то и технология его изготовления должна охватывать процесс выращивания исходного сырья. Наиболее подходящим для этого считается рапс, как требующий меньших затрат на получение. Хотя сейчас появляются большие перспективы у биодизеля из водорослей. При этом не занимается земля для выращивания культуры на топливо, и величина себестоимости биодизеля будет ниже, чем в других случаях.

Так вот, семена (рапс, соя, подсолнечник и т.д.) после проверки качества поступают на маслобойку. Оставшийся после производства масла шрот может быть использован комбикормовой промышленностью, а полученное масло, как предусматривает технология, идет на дальнейшую обработку. Она называется этерификацией, и после ее проведения, метиловых эфиров в составе биодизеля должно содержаться более девяноста шести процентов.

Сама технология проста, что делает возможным организацию производства биодизеля в домашних условиях. К маслу добавляется метанол (9:1), и в качестве катализатора – небольшое количество щелочи. Метанол может быть получен из опилок, а также вместо него допускается применять изопропиловый спирт или этанол. Процедура этерификации проходит в условиях повышенной температуры и занимает до нескольких часов. После окончания реакции в емкости наблюдается расслоение жидкости – сверху биодизель, внизу глицерин.

Глицерин удаляется (сливается снизу) и может использоваться в качестве сырья в каких-то других процессах. Получившийся биодизель надо очистить, порой вполне достаточно бывает выпаривания, отстаивания и последующей фильтрации. Подробней промышленный процесс производства приведен на видео.

Получение биодизеля в домашних условиях

Как видно из представленного описания, технология производства достаточно проста и позволяет изготавливать биодизель своими руками, вплоть до того, что в домашних условиях можно получать топливо, и порой не только для собственных нужд. Причины, по которым можно взяться за подобную работу, у каждого могут быть разными, но не касаясь их, стоит отметить, что во всем мире потребление биодизеля только растет.

Когда в домашних условиях изготавливают биодизель своими руками, главной проблемой будет не вопрос его производства, а обеспечение качества готовой продукции. Поставщиками сырья могут стать предприятия общественного питания, у которых в достаточном объеме есть использованное масло, и его можно купить по доступной цене. Выращиванием рапса стоит заниматься при потреблении биодизеля в большом количестве, например, для реализации на сторону или наличия большого парка техники.

При организации производства в домашних условиях наиболее актуальными будут проблемы:

  • Плохой выход, т.е. из первоначального сырья получается не более девяноста трех процентов готовой продукции. Обусловлено это может быть особенностями используемой в домашних условиях установки или режимами переэтерефикации.
  • Некачественная фильтрация. Подобный процесс достаточно сложный, и для получения в домашних условиях качественного биодизеля, ему надо уделить особое внимание. Для этого используются специальные технологии или адсорбенты.

Непосредственно с установкой по производству подобного топлива, можно ознакомиться на видео.

Существуют и другие варианты установок для производства в домашних условиях биодизеля, изготавливаемые промышленным способом.

Перспективы использования биодизеля

Как уже отмечалось, производство такого топлива только растет. И хотя сырьем для этого служит растительное масло, его получают в разных местах из разных культур. В Европе – рапс, в Индонезии – пальмовое масло, в Америке – соя, и т.д.

Однако наиболее перспективным считается получение биодизеля из водорослей . Для их выращивания могут использоваться как отдельные пруды, так и специальные биореакторы, а также участки морского побережья. Кроме того, при этом не только растет производство топлива, но и освобождаются земли для выращивания продуктов питания.

Хотя биодизель изготавливается из растительного масла, а не из опилок, он является отличным заменителем обычной солярки. Особенно в условиях ограниченных запасов нефти. И кроме того, нельзя исключать такого его достоинства, как возможность производства в домашних условиях. Несмотря на то, что при промышленном производстве он получается дороже солярки, тем не менее, является отличным альтернативным видом топлива для дизелей.

Как и из чего «сделать» дизельное топливо

Рост цен на топливо будит в голове фантазии на тему, как было бы хорошо избавиться от «заправочной зависимости». Как вам, например, такой фантастический проект: заехал в болото, побуксовал и между делом собрал выделившийся метан в специальный баллон? Все, теперь можно обратно на асфальт – до следующего болота топлива хватит. Так бы и катался от топи до топи, подпитывая свой автомобиль газообразными продуктами гниения. Увы, все это лишь мечты. В свете вышесказанного возникает только один вопрос: любите ли вы японскую кухню?..

Так вот, судя по всему, фотограф Щуси Ямада к кухне своей родной страны Японии относится очень положительно. Да что там, не исключено, что он любит ее даже больше, чем болотный оффроуд. И именно поэтому, отправившись в автономное кругосветное путешествие на своей дизельной Toyota Land Cruiser 100, он прокладывал курс не между красивейшими болотами земного шара, а от одного японского ресторана к другому. И что в этом удивительного, спросите вы. А то, что в ресторанах Ямада-сан заправляет не только свой организм, но и… автомобиль! Да, при желании он, наверное, мог бы написать книгу о том, как в разных частях света представляют себе кулинарные традиции Страны восходящего солнца, но цель его путешествия несколько иная – Щуси Ямада тестирует в реальных условиях сконструированный им же автономный аппарат по выработке биодизельного топлива.

Все верно: японскому фотографу удалось собственноручно сконструировать и собрать работоспособную установку, производящую вполне пригодную для использования «солярку» из отработанного фритюрного масла. И что самое главное – все это хитрое устройство помещается в багажнике машины и не требует для своей работы ничего, кроме получаемого даром масла и некоторых недорогих химических компонентов, о которых чуть позже. В общем, в каком-то смысле практически вечный двигатель!.. При этом закон сохранения энергии остается нерушим: масло-то поступает в систему из ресторанных кухонь (то есть со стороны). Тем более что там (на кухнях) оно уже выполнило свою историческую миссию и в любом случае подлежит утилизации. Вот, стало быть, Ямада его и утилизирует…

Зря улыбаетесь – так, передвигаясь от ресторана к ресторану, японский путешественник уже почти полностью обогнул наш земной шарик, проделав почти тридцать тысяч километров (и это без учета морских переправ). Океаны логично разделили огромный путь на несколько этапов, каждый из которых Щуси проделывал с новой командой, в состав которой входят «старший помощник» и переводчик. Впрочем, благодаря языковым границам переводчики менялись даже чаще (на отрезке маршрута по странам СНГ капитана сопровождают японский фотограф Юсуке и преподавательница японского языка из Киргизии Назира).

Путь самурая

А начиналось все вот так: создав год назад работоспособную установку, Щуси Ямада первым делом «обкатал» ее в ближних поездках по окрестностям Токио. И лишь убедившись, что все работает как положено, изобретатель решился на «кругосветку». А поскольку он принял твердое решение, что будет заправлять свой автомобиль только на кухнях, то никакого жесткого графика заранее не намечалось – все зависело от того, сколько масла будет предоставлено путешественнику и где его будет проще собирать. Ну а на случай, если в каком-то месте достаточного количества фритюрной «отработки» вдруг сразу не окажется, Щуси придумал истинно японский выход: сидеть на месте и терпеливо ждать, пока оно наберется... При этом путешественник не просто собирался проехать «масляный круг почета вокруг планеты». В его планы входили встречи с журналистами и участие в тематических выставках (конечно, если таковые будут совпадать с графиком).

Первый этап этого «великого масляного путешествия» состоялся в декабре прошлого года. Он получился совсем коротким: от Токио до Нагои, где автомобиль погрузили в контейнер и отправили морем в Канаду. Дальнейший путь продолжился в феврале из Ванкувера. Стояла зима, и погода преподнесла первые неприятные сюрпризы: уже при легком минусе растительное масло начинало густеть, а на сильном морозе и вовсе застывало. Как следствие заправлять «маслоперегонный аппарат» приходилось в тепле, а при сборе масла впрок требовалось сразу же добавлять специальные присадки (в противном случае его невозможно было перелить из канистр в бак без предварительного разогрева).

В общем, на диком севере путешественники долго не задержались и вскоре очутились в ЛосАнджелесе. Ранней весной этот город был прекрасен и располагал к тому, чтобы побыть здесь подольше. Тем более что стало уже по-настоящему тепло, а множество ресторанов были готовы предоставить буквально неисчерпаемые запасы фритюрной «отработки». Но путешествие на то и путешествие, чтобы двигаться вперед. А потому перламутрово-зеленый Land Cruiser отправился наматывать североамериканские мили с запада на восток по южным штатам, а затем по восточному побережью. В конце апреля он добрался до Вашингтона. Собственно, в американской столице путь по Новому Свету и завершился – Toyota поплыла через Атлантику, чтобы в июне из Лиссабона стартовать на следующий этап.

Однако задержка в этом городе вышла несколько продолжительнее, чем предполагалась. Как ни странно, в португальской столице оказалось довольно трудно достать необходимое количество масла! Осложнял ситуацию и языковой барьер. А так как путешественники планировали сразу же отправиться через Средиземное море на юг, то по расчетам им требовалось не менее 400 л пищевой «отработки». В общем, сырье для топлива собирали по самым разным лиссабонским заведениям общепита больше недели. Зачем был нужен такой запас? Да просто потому, что в Африке этого продукта вообще не достать, а тем более бесплатно. Причина банальна – на Черном континенте жарят на одном и том же масле до тех пор, пока оно есть, а затем подливают новое и продолжают жарить дальше, считая «плановую замену» непозволительной причудой заевшихся белых. Даже в Марокко, наиболее европеизированной стране Северной Африки, пополнять запас топлива удавалось только в «Шератоне» и других отелях высшего класса.

Впрочем, эта проблема была не единственной, с которой столкнулись японские путешественники. Едва ли не большей неприятностью была изнуряющая жара Сахары. «Мы просто не привыкли к 50-градусной температуре, – рассказывает Щуси Ямада. – Впрочем, для переработки масла это был скорее плюс – требовалось меньше энергии на его нагрев». Но как бы то ни было, а в Африке японские путешественники решили не задерживаться и, сделав круг по Марокко, вернулись в Испанию продолжать европейское турне. Посетив по пути Италию и Францию, они переправились на Британские острова, поколесили там, вновь проехали по тоннелю под Ла-Маншем и затем через Германию, Чехию и Украину добрались до Москвы, где собственно мы с ними и встретились. В общей сложности с начала пробега «маслопотребляющая» Toyota накатала порядка двадцати тысяч километров.

Российская столица задержала путешественников на неделю с хвостиком. Здесь хоть и не Африка, но к маслу отечественный общепит традиционно относится бережно и зря ценный продукт на альтернативное топливо не переводит. Опытным путем Ямада выяснил, что крупный московский ресторан в неделю «производит» порядка пятидесяти литров отработанного масла. В общем, как и в Лиссабоне, собирать его пришлось с миру по нитке. Более того, зная, что в российской провинции с этим сырьем дело обстоит еще хуже, и когда случится полноценная заправка в следующий раз – никто точно предсказать не может, Щуси набрал в Москве порядка семисот литров и лишь после этого двинулся в дальнейший путь на восток. Добравшись до Уральских гор, путешественники забрали южнее, прокатились по степям Казахстана и затем вновь вернулись в Россию, после чего сделали еще одну длительную остановку в Новосибирске. Сейчас Щуси со своей командой направляется во Владивосток, чтобы оттуда доставить машину домой, в Японию.

Материальная часть

Автомобиль, на котором пустились в странствие японцы, ничем, кроме химической установки, расположенной в его багажнике, и измененного салона, не отличается от стандартной Toyota LC 100 с 4,2-литровой 24-клапанной рядной турбодизельной «шестеркой» 1HD-FTE под капотом. Причем сам двигатель никаким образом не переделывался. По словам Щуси, разницы в тяге или динамике автомобиля нет, и понять, что именно в данный момент сгорает в цилиндрах, можно только по запаху выхлопа (при работе на масле из выхлопной трубы тянет подгорелыми семечками). Расход топлива тоже остается стабильным – те же 12–14 л на «сотню», которые при неспешном равномерном движении по шоссе иногда удается снизить до десяти.

А теперь заглянем в салон автомобиля… Во втором ряду осталось только одно посадочное место – всю заднюю часть машины занимают химический реактор (в нем растительное масло превращается в полноценное дизельное топливо) и канистры с резервным сырьем, а также запасные расходные элементы. Тут же едет автономный дизель-генератор на тот случай, если на стоянке нет возможности запитать установку от стационарной сети. Важная особенность химической установки в том, что она может потреблять электричество и от городской электросети, и от дизель-генератора, и от бортовой сети автомобиля. Процесс может идти как во время стоянки, так и при движении машины и не требует особого внимания со стороны экипажа. Нагреватель потребляет до 2 кВт, остальные элементы системы – по 200–400 Вт. При этом установка остается энергетически и экономически выгодной даже при полностью автономном цикле без внешней электросети. Но бережливые японцы все-таки предпочитают питать свой реактор электричеством извне.

Химия и физика В принципе растительное масло (как и любой другой органический жир) могло бы быть полноценным горючим для дизельного двигателя и само по себе, если бы не высокая вязкость. А потому вся суть превращения этого продукта в моторное топливо сводится к одной простой вещи: понижению этой самой вязкости, что, однако, сделать не совсем просто.

Дело в том, что с точки зрения химии растительное масло – это смесь триглицеридов, то есть соединений сложных эфиров глицерина с одноосновными жирными кислотами. А поскольку именно глицерин придает маслу повышенную вязкость, то, стало быть, его надо каким-то образом оттуда удалить. Самый простой и дешевый способ, применяемый как в промышленном производстве биодизеля, так и в установке японского изобретателя – переэтерификация, то есть замещение глицерина спиртом. В данном случае спирт – метиловый. Он хотя и ядовит, но, во-первых, дешев, а во-вторых, с ним проще провести реакцию в походных условиях. При смешивании масла со спиртом и нагревании свыше 60 градусов (в присутствии щелочи как катализатора) образуется смесь метиловых эфиров, а глицерин выпадает в осадок. Именно эти метиловые эфиры и есть вожделенное биодизельное топливо.

Баки для исходных компонентов Щуси расположил в правой части своей установки: первый, на 100 литров, для отработанного фритюрного масла, а второй, на 20 литров, – для метанола (именно в пропорции 5:1 необходимо смешивать эти вещества для правильного прохождения реакции). Однако сразу преобразовать такие объемы не позволяет дефицит места в багажнике. Поэтому главный резервуар, в котором проходит химическая реакция, имеет объем всего 40 л, а все исходное сырье, включая и катализатор из отдельной емкости, поступает в него автоматически в правильном соотношении. После полуторачасового нагревания и шестичасового охлаждения смесь разделяется на биодизель и глицерин (последнего на выходе получается столько же, сколько метанола на входе).

После чего глицерин как более тяжелое вещество опускается вниз и затем просто сливается в отдельную емкость. В промышленном производстве глицерин обычно собирают, очищают, а затем используют в качестве сырья для химической и косметической промышленности. Однако в условиях дальнего путешествия это нерационально. Поэтому изобретатель утилизирует глицерин оригинальным и безопасным для природы способом: в отдельной емкости его перерабатывают специальные бактерии, дающие на выходе подобие гумуса, который можно уже просто высыпать на землю. Но на этом процесс получения биодизельного топлива не заканчивается. Полученную смесь метиловых эфиров требуется дополнительно очистить – в ней все еще присутствуют остатки глицерина, мыло (образуется попутно в процессе реакции из-за случайного, но неизбежного попадания в систему воды) и другие примеси. Основной промышленный способ разделения «мух и котлет» на сегодняшний день – многократная промывка большим количеством воды с последующей фильтрацией и осушением.

Однако поскольку эта технология совершенно неприемлема для портативной автомобильной установки, японскому изобретателю пришлось немало поработать, создавая систему сухой фильтрации. Результат его трудов занимает в багажнике Toyota все пространство слева от главного резервуара. Здесь полуфабрикат биотоплива попадает сначала в специальную центрифугу, а затем проходит через систему из четырех фильтров со специальным сорбентом, задерживающим все лишние остатки (комплекта картриджей для этого устройства хватает на 10 тыс. км). Только после этого метиловые эфиры можно считать достаточно чистыми для того, чтобы заливать их в бак автомобиля. Вы спросите, во сколько же обходится полученное таким образом дизельное топливо? По предварительным подсчетам Щуси, при бесплатном масле литр топлива обходится примерно в 50 американских центов. Но это без учета амортизации самой установки по производству биодизеля…

РАБОТА ЕЩЕ НЕ ЗАКОНЧЕНА

О биодизельном топливе впервые я узнал три года назад. В первый раз проехал на нем 500 км, никакой разницы в поведении машины по сравнению с соляркой не заметил и решил, что можно рискнуть на марафонскую дистанцию. Например, пересечь всю Японию с севера на юг, используя только биотопливо. Сказано – сделано. Правда, тогда я не вырабатывал горючее самостоятельно, а заправлялся на стационарных колонках. Зная, что в Европе биодизель очень популярен, я решил отправиться туда и два года назад совершил вояж по десяти странам Европы. Однако использовать один лишь растительный дизель в тот раз у меня не получилось. В Испании, например, биотопливных заправок практически не было, а во Франции под маркой «биодизель» продавалось топливо не чисто растительного происхождения, а в смеси с обычным дизельным. Тогда у меня впервые мелькнула мысль об автономной установке по производству биодизеля, ведь во многих местах, к примеру в России, Америке, Африке, его нет вообще. Поэтому для путешествия по всему миру на биотопливе необходим автономный компактный аппарат по его производству. Единственная сложность – промышленность такие установки не выпускает. Но раньше, чем я задумался о создании такой установки, одна из японских раллийных команд предложила мне место пилота на «Дакаре-2007». Я согласился, предложив в ответ использовать растительный дизель в качестве горючего для «боевой» машины. Тема биотоплива для спортивных моторов была диковинкой, но после некоторых раздумий они согласились. В результате одной из наших техничек на «Дакаре» была цистерна с биодизелем из Европы. Гонку я провел отлично, без единой проблемы с двигателем, и сумел подняться на «бронзовую ступень» пьедестала в дизельном зачете. После «Дакара» я принялся за автономную топливную установку, и через 10 месяцев этот аппарат был готов. Работа оказалась нелегкой. Мне не хватало специальных знаний, поэтому я общался со многими специалистами в области химического машиностроения по всему миру. Изучал теорию, строил тестовые образцы оборудования, проверял их. Проблема была в том, что практически все подобные современные устройства используют в процессе очистки топлива большое количество воды. В автомобиле просто нет для него места, поэтому мне пришлось самому разрабатывать систему сухой очистки (до меня подобными изысканиями занимались в мире всего несколько человек). Так получилась компактная установка, которая помещается в багажник. Но работа еще не закончена. Это экспериментальный прототип, который я продолжаю совершенствовать по ходу поездки.

Глобальная проблема

Понятно, что своим пробегом японец пытается привлечь внимание общественности к необходимости замены традиционного топлива произведенным из возобновляемых ресурсов. Слов нет, это правильная и, я бы даже сказал, благородная идея. Но есть несколько нюансов. Для начала прикиньте в уме, сколько отработанного масла потребуется для того, чтобы бесперебойно заправлять дизельные автомобили хотя бы одного города, и справятся ли с такой задачей все вместе взятые рестораны этого населенного пункта? Опыт биотопливного пробега показал, что даже если будет налажен централизованный сбор и переработка фритюрного масла, общепит сможет удовлетворить лишь мизерную часть потребности в «сырье». В общем, капля в море. Впрочем, это еще совсем не повод не заниматься переработкой кухонных отходов. Другое дело, что эту самую «каплю» придется чем-то дополнять.

И тут возникает еще больше вопросов. Дело в том, что биотопливные темы в мире поднимаются с середины 70-х (то есть со времен первого нефтяного кризиса). Уже тогда были обозначены два перспективных направления: использование этилового спирта вместо бензина и растительного масла вместо дизельного топлива. Впереди планеты всей тогда оказалась Бразилия, очень быстро наладившая производство топливного этанола из сахарного тростника и с завидной оперативностью переоснастившая свой автопарк для езды на спирте (как в этой стране обошли «традиционную российскую проблему», история умалчивает). Когда же нефть вновь подешевела, бразильские автомобили с легкостью перешли на двойное «питание», и теперь охотно потребляют смесь бензина и этанола.

В Европе биотопливом начали активно заниматься с 1992 года, и в отдельных странах (например, в Германии) к сегодняшнему дню эти разработки достигли заметных высот. Вообще же нужно сказать, что в Старом Свете приоритетным направлением было признано производство биодизеля из растительного масла. Более того, в 2007 году здесь было изготовлено (по данным Global Petroleum Club) 5713 миллионов литров биотоплива.

Но тут забили тревогу экологи. Казалось бы, им-то, наоборот, радоваться надо: в отличие от минерального топлива биологическое дает более чистый выхлоп и не загрязняет почву и воду при попадании в них (не говоря уже о сохранении невосполнимых ископаемых ресурсов). Но все оказалось сложнее. Наиболее энергетически выгодный биодизель получается из пальмового масла, которое дает масличная пальма, произрастающая главным образом в Юго-Восточной Азии (именно из такого масла производится львиная доля биодизельного топлива во всем мире). Разумеется, столь выгодную и перспективную культуру в последние годы стали выращивать все активнее, расширяя посадочные площади за счет окружающего леса. И тут обнаружился весьма неприятный побочный эффект. Экологическая угроза от вырубки дождевых тропических лесов, которые активно поглощают углекислый газ и тем самым снижают парниковый эффект на нашей планете, на деле оказалась гораздо страшнее, чем вред от выхлопных газов всех транспортных и промышленных дизелей, работающих на традиционном топливе... В общем, тупик.

Другие же масличные культуры, наиболее перспективной из которых в европейском климате считается рапс, гораздо менее выгодны как с энергетической, так и с экономической точки зрения. Судите сами: с гектара посадок масличной пальмы можно получить до 5950 л масла, а с гектара рапсового поля – до 1190 л. К слову, тот же подсолнечник дает всего 952 л. Как следствие для полного замещения минерального топлива рапсовым потребуется многократное увеличение пахотных площадей. Плюс повышение урожайности путем внесения большего количества химических удобрений, а также генной модификации растений. В общем, тоже путь с весьма туманной экологической перспективой. Не случайно же, по данным экспертов Международного социально-экологического союза, без вреда для природы из масличных растений в мире можно производить не более 20% требуемого дизельного топлива. При этом по их же подсчетам в России, где сельское хозяйство во многих регионах находится в запустении (в том числе и изза высоких цен на горючее), крестьяне без ущерба для природы и производства пищевых культур могли бы сами обеспечивать себя дешевым биотопливом. Что ж, уже хорошо.

А что в этой ситуации делать горожанам, да и вообще – что делать? Однозначного ответа на этот вопрос на сегодняшний день просто нет. Перейти всем миром по примеру Бразилии на этанол проблематично – дешевый сахарный тростник растет далеко не везде. Гнать технический спирт из более дорогого зерна чревато еще большим увеличением цен на зерно, в том числе и продовольственное. С точки зрения экспертовэкологов, лучшим решением этой проблемы стал бы гидролизный спирт из отходов деревообработки (попросту говоря, опилок) и другой бросовой биомассы, содержащей целлюлозу. Но тут, по крайней мере в нашей стране, хватает сложностей юридического плана: существующие на сегодняшний день акцизы уничтожают идею в зародыше.

А что касается дизельного топлива, то здесь наиболее перспективный источник сырья – маслосодержащие водоросли (правда, технология все еще находится в начальной стадии разработки). Также существует еще одна потенциально интересная инновация, предложенная в 2005 году немецким фермером и изобретателем Кристианом Кохом, применяя которую можно превратить в солярку практически любые органические и пластиковые отходы, попутно решая проблему утилизации бытового мусора. Впрочем, все это темы для отдельных материалов. Развитие науки не стоит на месте, а значит, у нас еще будет повод вернуться к этой важной для всех проблеме.

текст: Евгений КОНСТАНТИНОВ
фото: Евгений КОНСТАНТИНОВ
из архива Щуси ЯМАДЫ

Производство биодизеля в домашних условиях - Получение биодизеля своими руками

Общий технологический процесс получения биодизеля.


Для получения биодизеля используют любые виды растительных масел — подсолнечное, рапсовое, льняное и т.д. При этом биодизель полученный из разных масел имеет некоторые отличия. Так, например пальмовый биодизель имеет наибольшую калорийность, но и самую высокую температуру фильтруемости и застывания. Рапсовый биодизель несколько уступает пальмовому по калорийности, но лучше переносит холод, потому более всего подходит для дизельных двигателей эксплуатирующихся вевропейских стран и России.

Сам процесс получения биотоплива , в принципе, достаточно прост. Нужно уменьшить вязкость растительного масла, чего можно достичь различными способами. Любое растительное масло — это смесь триглицеридов, т. е. эфиров, соединенных с молекулой глицерина с- трехатомным спиртом (C3H8O3 ). Именно глицерин придает вязкость и плотность растительному маслу. Задача при приготовлении биодизеля- удалить глицерин, заместив его на спирт. Этот процесс называется трансэтерификацией.

Реакция в целом выглядит так,

CH2OC=OR1
CHOC=OR2 + 3 CH3OH → (CH2OH )2CH-OH + CH3COO-R1 + CH3COO-R2 + CH3OC=O-R3
CH2COOR3

Триглицериды+метанол→ глицерол+эфиры,

Где R1, R2, R3: алкильные группы.

В результате применения метанола образуется метиловый эфир, в результате использования этанола- этиловый эфир.

Из одной тонны растительного масла и 111 кг спирта (в присутствии 12 кг катализатора) получается приблизительно 970 кг (1100 л) биодизеля и 153 кг первичного глицерина.
Для начинающих лучше использовать метанол, с этанолом процесс идет чуть сложнее. Необходимо помнить о всех правилах работы с метанолом.
В качестве щелочи берется гидроксид калия КОН или гироксид натрия — NaOH. Для начинающих рекомендуется использовать именно NaOH, он очень гигроскопичен, его необходимо хранить плотно закрытым и при покупке, потряхивая банку, убедиться, что он не набрал влагу.

Правила работы со щелочами.

Необходимо также соблюдать правила безопасности при работе с гидроксидами (щелочами), избегать попадания в глаза, беречь от открытых источников огня, использовать при работе перчатки и защитные средства. Щелочь очень активно может реагировать с алюминием, оловом и цинком — для хранения щелочи нужно использовать стеклянную посуду, нержавеющую сталь или специальный полипропилен высокой прочности.

Обычно необходимое количество метанола составляет 20 % от масла по весу, например для использования 100 л отработанного масла потребуется 20 л метанола. При смешивании щелочи и метанола образуется метоксид, реакция экзотермическя, с выделением тепла.


Правила работы с метанолом.

Метанол-яд! Соблюдать максимальные меры предосторожности! Нельзя вдыхать пары, необходимо избегать открытых источников огня, использовать защитные средства для кожи, в случае случайного контакта промыть большим количеством воды. В процессе работы недопустимо присутствие детей и домашних животных!

В процессе реакции масло просто нагревается до определенной температуры (для ускорения химической реакции) и добавляется смесь катализатора и спирта. Некоторое время смесь перемешивается и отстаивается. В результате успешной реакции смесь должна расслоиться, образуя биодизель в верхнем слое, называемый химически « эфир», затем слой, содержащий много мыла и на дне остается глицерин. Глицерин и мыльный слой затем отделяются, а биодизель промывается различными способами для удаления остатков мыла, катализатора и других возможных примесей. После промывок он обезвоживается для удаления остатков воды.

(производство биодизеля в домашних условиях, биотопливо в домашних условиях, биотопливо своими руками, биодизель своими руками)

При обычной температуре реакция проистекает очень медленно или совсем не идет. Нагревание, также как использование кислоты (основания) просто способствут ускорению реакции. Химия процесса одинакова как при работе с небольшими объемами в гараже, так и на больших промышленных мощностях.
При использовании отработанных растительных масел, необходима фильтрация сырья для удаления возможных примесей. Также важно удаление возможной воды для предотвращения гиролиза триглицеридов и образования солей жирных кислот вместо реакции трансэтерификации и образования биодизеля.
В домашних условиях это часто достигается простым нагреванием смеси до 120 °C, при этом вся имеющаяся вода выкипает. В течение этого процесса возможно разбрызгивание, для предотвращения чего операция должна проводиться в достаточно большой емкости, заполненной не более чем на две трети, закрытой, но неплотно.
В лабораторных условиях первоначальное масло просто перемешивается с осушающим агентом, таким как сульфат магния для удаления воды. После этого осушающий агент удаляется простой фильтрацией. Иногда вязкость масла не позволяет хорошо очистить его таким способом.

Шаги процесса

Нейтрализация свободных жирных кислот .

Титрование масла.
При использовании свежего растительного масла количество используемой щелочи постоянно и составляет около 1 % от веса используемого масла. Это 3,5 грамма на литр растительного масла. Но при использовании отработанного масла (более закисленного, с другим содержанием Свободных Жирных кислот) необходимо рассчитать количество добавляемой щелочи, для чего проводят титрование. При титровании используется изопропиловы спирт (так как он не реагирует с маслом). Необходимо провести по меньшей мере, три титрования, чтобы избежать потом ошибок при использовании больших количеств реактивов. Титрованием определяется количество свободных жирных кислот, присутствующих в масле и количество щелочи, необходимое для их нейтрализации.В процессе титрования нужно быть уверенным, что все вещества сухие, и учитывать, что в результате смеситель немного нагреется.

Трансэтерификация.

Рассчитанное количество щелочи после титрования (обычно гидроксида натрия — NaOH) медленно при помешивании растворяется в избытке спирта (для более полного протекания реакции) и эта смесь смешивается с теплым раствором масла при нагревании (обычно около 50 °C) в течение нескольких часов (4 -8) для прохождения реакции трансэтерификации. Реакционная смесь должна поддерживаться выше точки кипения спирта (около 70 °C), но в некоторых системах из соображений безопасности рекомендуется поддерживать диапазон температур от комнатной до 55 °C. Обычно время реакции составляет от 1 до 10 часов, и при нормальных условиях скорость реакции удваивается при повышении температуры реакции на 10 °C. Для предотвращения испарения спирта реакцию нужно проводить в закрытой емкости, но важно избегать плотно закрытой системы (опасность взрыва).

После завершения реакции на дне осаждается глицерин. Биодизель должен быть цвета меда, в то время как глицерин темнее. При поддержании температуры около 38 С глицерин остается в жидком состоянии и может быть легко удален снизу смесителя отдельным шлангом.
Глицерин, полученный из отработанных масел обычно коричневый и твердеет при температуре 38 С, глицерин из свежего масла остается в жидком состоянии при более низких температурах. Его прекрасно можно использовать, как побочный продукт, предварительно выпарив из него метанол нагреванием до 65,5 С.

Удаление остатков мыла.

Обычно полученный биодизель содержит много растворенных остатков мыла от реакции ионов Na+ с водой. Этого можно попытаться избежать, выпарив предварительно всю воду и стараться не допускать воды при приготовлении метоксида. Важно использовать сухой смеситель. После получения биодизеля лучше дать ему отстояться в течение недели, таким образом все мыльные остатки оседают и уходят при последующей фильтрации. Другой метод заключается в неоднократной промывке водой этих остатков. При первом промывании лучше добавить слегка подкисленную винным уксусом воду, кислота доведет раствор до нейтрального, удаляя любую щелочь, присутствующую в растворе. Некоторые экспериментаторы используют технику « пузырьковой промывки», длительностью около 12 часов
При использовании этанола часто образется эмульсия, от которой можно избавиться просто отстаиванием, центрифугированием, или добавлением низкокипящего (то есть, легко удаляемого) неполярного растворителя, и дальнейшей фильтрацией. Верхний слой — смесь биодизеля и спирта- фильтруется. Избыток спирта можно удалить в процессе выпариванияили дистилляции, или экстрагировать водой, но после биодизель должен быть осушен с помощью осушающего агента.

Определение качества получившегося биодизеля.

Качество получившегося продукта определяется, прежде всего, на глаз и проверкой рН. Проверить кислотность можно с помошью лакмусовой бумажки или обычным лабораторным цифровым рН- метром. Он должен быть нейтральным, 7,0. На вид он должен выглядеть как чистое подсолнечное масло. Не допускается наличие никаких взвесей, примесей, частиц или замутнений. Мутность означает присутствие воды, которая удалается нагреванием, частицы необходимо отфильтровать через 5 микронный фильтр. После первого применения биодизеля обязательно следует проверить топливные фильтры.

Существует множество различных технологий первичной очистки масла с помощью адсорбентов. Также используются различные адсорбенты при очистке (промывке) готового биодизеля. Небходимо использовать фильтры для очитски воды после промывки биодизеля, которые отбирают типичные загрязнители- спирты, кетоны, альдегиды, амины и аммиак, пестициды и гербициды, хлорорганические соединения, фенолы и масла, SО2, углеводороды, летучие соединения, сероводород, меркаптаны и промышленные растворители, другие загрязнители. После прохождения воды через фильтр возможно ее повторное использование или сброс в канализацию.

Биодизель,Биодизельное топливо, спирт, жидкое биотопливо,производство биодизеля в домашних условиях , альтернативная энергия, биодизель своими руками, технология производства биотоплива в домашних условиях,

Россия занимает лидирующие позиции на мировом нефтяном рынке, и, казалось, априори у наших фермеров не должно быть проблем с топливом для посевной или страды. Определенные усилия прилагает для этого и правительство, обязывающее нефтяные компании продавать топливо крестьянам во время посевной с 10%-дисконтом. И всё же многие земледельцы топливный вопрос называют самой главной головной болью.

«В действительности всё не так, как пишут в газетах, - рассказывает Макар Гаврилов из донской глубинки, - не до конца погашенные прошлогодние кредиты, как застарелые болячки, не дают встать в полный рост. Очень трудно рассчитывать на новые ссуды. То, что банкиры дают, иначе, как кабалой не назовёшь. Можно взять солярку в долг у коммерсантов под будущий урожай, но с дисконтом процентов тридцать, а то и пятьдесят. Вот и разоряются мужики. Было бы дешёвое дизтопливо , многие бы выжили».

Такое положение дел толкает некоторых умельцев искать выход в биотопливе , хотя бы для того, чтобы не зависеть от превратностей национальной экономики. В принципе - правильное решение, считает Гаврилов: «сам вырастил биомассу, сам переработал её в топливо, и гуд бай, банкиры и нефтяники».

Калейдоскоп фактов

Мало кто знает, что еще в 1900 году сам Рудольф Дизель озвучил идею синтезировать дизельное топливо из арахисового масла, и даже реализовал эту идею на опытном образце. Во время второй мировой войны немцы из древесных опилок получили «синтегаз» для дизельных моторов. А в Бразилии этой проблемой озаботились на самом высоком уровне и даже приняли специальную программу. В 2005 году из 36,3 миллиардов литров мирового производства биоэтанола (заменителя бензина) на её долю пришлось чуть меньше половины.

Но это только - цветочки. Настоящий бум ожидается в секторе производства биологического дизельного топлива. По прогнозу Организации экономического сотрудничества и развития и Организации ООН по продовольствию и сельскому хозяйству, его объем в ближайшие пять лет удвоится и достигнет 24 миллиардов литров.

В России ситуация несколько иная. Национальная культура пития - точнее, её отсутствие - заставляет власти скептически смотреть на производство биоэтанола . К примеру, акциз на спирт в 25 рублей сводит на «нет» всё потуги самогонщиков биоэтанола. Остаётся только одно - производство дизельного биотоплива.

Brassica napus, по-русски рапс

В последние годы всё чаще говорят о рапсе - о растении, несправедливо позабытом. Крестьяне предпочитают выращивать пшеницу, подсолнух, гречку, реже - горох, свеклу, картофель, а рапс - нет. Впрочем, агротехнические пристрастия и экономическая целесообразность - вопрос почти интимный, и каждый выращивает то, что считает нужным. Но с точки зрения производства биодизеля, рапс в России является почти идеальным растением, хотя бы потому, что в его семенах содержится до 50% жира, так необходимого для синтеза топлива.

Его можно выращивать на землях, отданных под зеленый пар, поскольку рапс способствует увеличению урожайности культур, которые следуют за ним в севообороте. С гектара можно собрать до трех тонн рапсовых семян, из которых можно получить тонну солярки, и до 30 тонн зеленной массы - для нужд животноводства.

«Нельзя сказать, что рапс - неприхотливая культура, - говорит Макар Гаврилов, - убирать его хлопотно, но он неплохой медонос. Скажу так, что рапс становиться очень интересен тем, кто хочет сделать из него солярку. И коровки накормлены, и земля вроде бы под паром, и пчелы рядышком, и топливо дармовое».

Вначале надо попробовать

Считает земледелец Иван Подопригора из воронежской области. Его племянник Андрей, студент-химик из Новочеркасского технического университета, посоветовал дяде получить солярку из рапсового масла. «Дело - не хитрое, - рассказывает о своем первом опыте Подопригора, - хотя и требует сноровки».

Далее фермер рассказал о первом опыте. Андрей привез немного каустической соды, попросил двести грамм чистого спирта, который в дальнейшем посоветовал заменить дешевым метанолом, и литр рапсового масла. Андрей быстро отмерил 5 грамм соды, чтобы та не набрала воды из атмосферы. Затем в стеклянную двухлитровую бутыль, с завинчивающейся крышкой, налил спирт и высыпал в неё соду. Тщательно перемещал, и полученную жидкость, так называемый метоксид, влил в масло, нагретое до 55 градусов. Для этого студент использовал трехлитровый стеклянный баллон, плотно закрытый крышкой, с отверстием для блендера. Смешивал при низких оборотах в течение 20 минут, затем час выдерживал при 55 градусов, и сутки отстаивал при обычной температуре. Внизу банки собрался глицерин, а желтоватая жидкость над ней, оказывается, и есть дизтопливо, которое необходимо отфильтровывать.

Качество такого топлива зависит, прежде всего, от чистоты каустической соды, которая очень быстро поглощает воду и качества фильтрации. Зимой полученную жидкость можно вынести на улицу. Чем ниже температура, тем гуще становится глицерин, и тем чище дизельное топливо.

«Честно говоря, я сомневался, - вспоминает Иван Подопригора, - отвез знакомым экспертам, проверяющим на качество бензин и дизельное топливо и попросил оценить новинку. Парни сказали: «гуд».

Оборудование для биотоплива и затраты на производство

Оборудования для производства биотоплива можно сделать самому из нержавеющей стали, можно и купить. Собственно говоря, нужно изготовить два сообщающихся смесителя: первый - для получения метоксида; второй, с подогревом, - для производства биодизеля . Также потребуются простенький дозатор для соды, мерная емкость для метанола и фильтры.

Второй смеситель желательно сделать съемным, или на тележке, чтобы после отстаивания вынести или выкатить на улицу, на мороз. Технология и схемы производства, также как и расчет оборудования, можно найти в интернете или в специальной литературе.

Вообще же специалисты приводят разные пропорции, но сходятся в том, что для получения одной тысячи литров дизтоплива потребуется тонна рапсового масла, сто десять литров метанола марки «А» (ГОСТ 2222-95) и десять килограмм каустической соды (ГОСТ 24363-80). При этом метанол на рынке продается от 7 рублей за литр, а каустическая сода - порядка 80 рублей за килограмм.

Итого получаем, что сырье для получения тонны солярки таким методом обходится в 1600 рублей при наличии своего рапсового масла. Для сравнения, тонна дизтоплива на АЗС обойдется не менее чем в 23 тысяч рублей. Кстати, вместо метанола можно использовать спирт, также собственного производства.

«В любом случае - выгодно, - считает Иван Подопригора, - и если у вас получится, вы можете смело сказать: «я сам себе нефтяник».

***
Идея, конечно, заманчивая. Но специалисты предупреждают об аккуратной работе с метанолом и каустической содой. Хотя сам процесс синтеза не является опасным, так как не требует работы под давлением и высоких температур. Так что дерзайте, но не забывайте о специальных анализаторах качества топлива, иначе рискуете произвести некачественное горючее, которое "убьет" двигатели.

Александр Ситников

Нефть – это смесь многих углеводородов, от самых легких до гудрона и асфальтенов. При разделении на фракции из нефти получают все виды дизельного топлива.

Нефтеперерабатывающий завод где-то в России…

Прежде чем оказаться в топливном баке автомашины, трактора или танкера, нефти предстоит пройти сложную первую стадию нефтепереработки , в результате которой и получается лучшее по многим показателям топливо.

Переработка происходит в ректификационных колоннах – там нагретая до высоких температур нефть выделяет определенные, требуемые для получения заданного продукта фракции. Например, для получения дизельного топлива требуется температура от 180 до 360 °С. Этот этап производственной технологии – самый легкий, недорогой и быстрый, но обеспечивает самый низкий уровень выхода дизтоплива – не более 22-25%. Другим, более тяжелым углеводородным фракциям требуется дальнейшая переработка крекинг-процессом, на выходе которого и получаются компоненты, предназначенные для сгорания в цилиндрах дизельного двигателя.

Известно несколько типов крекинг-процесса : термический, ведущийся без катализаторов, гидрокрекинг, в течение которого нефтесырьё взаимодействует с водородом, содержащимся в реакторе, а также каталитический, где ускорителями процесса служат такие металлы, как железо, никель, иногда губчатая платина. Это сложный, энергоемкий, но необходимый этап, увеличивающий выход легких компонентов топлива до 70-80% объема исходного сырья.

Далее полуфабрикаты дизтоплива требуется очистить от серы и прочих примесей , для чего нефтепродукты подвергают гидрокрекингу. В процессе взаимодействия с водородом, имеющим высокую химическую активность, при высокой температуре и давлении образуются сернистые и другие соединения, которые далее удаляются из реактора. Очистка от серы стоит дорого, расходы на неё часто превышают 50% стоимости выработки дизтоплива. Расходы еще более увеличиваются, если сырьем оказываются наиболее распространенные сегодня сорта высокосернистой нефти. Финальный этап очистки дизельного топлива от примесей – щелочная очистка при помощи раствора едкого натра, удаляющая органические кислоты и сернистые соединения.

Если готовое топливо не будет подвержено высоким требованиям или приданию специфических свойств, то далее следует завершающий этап получения дизтоплива – смешение (компаундирование) . Продукты крекинга и прямой нефтепереработки смешиваются в требуемых пропорциях исходя из допустимого содержания серы, обогащаются всевозможными присадками. Пусть это и кажется простым, но смешение – долгий и дорогостоящий процесс. Сложносоставные топлива, имеющие десятки присадочных компонентов, требуют в ходе процесса, множества химанализов, строгого соблюдения параметров и режимов смешивания. Компаундирование часто происходит при повышенных температурах и давлениях, на весьма сложном оборудовании. В случае необходимости получить топливо высокой морозоустойчивости может понадобиться также и депарафинизация.



Статьи по теме: