Переход на сверхзвук. Звуковой барьер

Правообладатель иллюстрации SPL

О впечатляющих фотографиях реактивных истребителей в плотном конусе водяного пара часто говорят, что это, мол, самолет преодолевает звуковой барьер. Но это ошибка. Обозреватель рассказывает об истинной причине феномена.

Это эффектное явление неоднократно запечатлевали фотографы и видеооператоры. Военный реактивный самолет проходит над землей на большой скорости, несколько сотен километров в час.

По мере того как истребитель ускоряется, вокруг него начинает формироваться плотный конус конденсата; создается впечатление, что самолет - внутри компактного облака.

Будоражащие фантазию подписи под такими фотографиями зачастую утверждают, что перед нами - визуальное свидетельство звукового удара при выходе самолета на сверхзвуковую скорость.

На самом деле, это не совсем так. Мы наблюдаем так называемый эффект Прандтля-Глоерта - физическое явление, возникающее при приближении самолета к скорости звука. С преодолением звукового барьера оно не связано.

  • Другие статьи сайта BBC Future на русском языке

По мере развития авиастроения аэродинамические формы становились все более обтекаемыми, а скорость летательных аппаратов неуклонно росла – самолеты начали делать с окружающим их воздухом такие вещи, на которые не были способны их более тихоходные и громоздкие предшественники.

Загадочные ударные волны, формирующиеся вокруг низколетящих самолетов по мере приближения к скорости звука, а затем и преодоления звукового барьера, свидетельствуют о том, что воздух на таких скоростях ведет себя весьма странным образом.

Так что же это за таинственные облака конденсата?

Правообладатель иллюстрации Getty Image caption Эффект Прандтля-Глоерта наиболее ярко выражен при полетах в теплой, влажной атмосфере

По словам Рода Ирвина, председателя аэродинамической группы Королевского общества воздухоплавания, условия, при которых возникает конус пара, непосредственно предшествуют преодолению самолетом звукового барьера. Однако фотографируют это явление обычно на скоростях чуть меньше скорости звука.

Приземные слои воздуха плотнее, чем атмосфера на больших высотах. При полетах на малых высотах возникает повышенные трение и лобовое сопротивление.

Кстати, летчикам запрещено преодолевать звуковой барьер над сушей. "Выходить на сверхзвук можно над океаном, но не над твердой поверхностью, - объясняет Ирвин. - Между прочим, это обстоятельство было проблемой для сверхзвукового пассажирского лайнера Concorde - запрет ввели уже после ввода его в эксплуатацию, и экипажу разрешалось развивать сверхзвуковую скорость только над водной поверхностью".

Более того, визуально зарегистрировать звуковой удар при выходе самолета на сверхзвук чрезвычайно трудно. Невооруженным глазом его не увидеть - только при помощи специального оборудования.

Для фотографирования моделей, продуваемых на сверхзвуковых скоростях в аэродинамических трубах, обычно используют специальные зеркала, чтобы засечь разницу в отражении света, вызванную формированием ударной волны.

Правообладатель иллюстрации Getty Image caption При перепаде воздушного давления температура воздуха понижается, и содержащаяся в нем влага превращается в конденсат

Фотографии, полученные так называемым шлирен-методом (или методом Теплера), используют для визуализации ударных волн (или, как их еще называют, скачков уплотнения), образующихся вокруг модели.

В ходе продувок вокруг моделей не создаются конусы конденсата, поскольку используемый в аэродинамических трубах воздух предварительно осушается.

Конусы водяного пара связаны со скачками уплотнения (а их несколько), формирующимися вокруг самолета по мере набора им скорости.

Когда скорость летательного аппарата приближается к скорости звука (около 1234 км/ч на уровне моря), в обтекающем его воздухе возникает перепад местного давления и температуры.

Как следствие, воздух теряет способность удерживать влагу, и формируется конденсат в форме конуса, как на этом видео .

"Видимый конус пара вызван скачком уплотнения, при котором возникает перепад давления и температуры окружающего самолет воздуха", - говорит Ирвин.

На многих из самых удачных фотографий этого явления запечатлены самолеты ВМС США - и это неудивительно, учитывая, что теплый, влажный воздух у поверхности моря, как правило, способствует более яркому проявлению эффекта Прандтля-Глоерта.

Такие трюки часто проделывают истребители-бомбардировщики F/A-18 Hornet – это основной тип самолетов палубного базирования американской морской авиации.

Правообладатель иллюстрации SPL Image caption Скачок уплотнения при выходе самолета на сверхзвук трудно обнаружить невооруженным глазом

На таких же боевых машинах летают члены пилотажной группы ВМС США Blue Angels, мастерски выполняющие маневры, при которых вокруг самолета образуется конденсационное облако.

Из-за зрелищности явления его нередко используют в целях популяризации морской авиации. Летчики намеренно маневрируют над морем, где условия для возникновения эффекта Прандтля-Глоерта наиболее оптимальны, а поблизости наготове дежурят профессиональные флотские фотографы - ведь сделать четкий снимок реактивного самолета, летящего со скоростью 960 км/ч, на обычный смартфон невозможно.

Наиболее эффектно конденсационные облака выглядят на так называемом трансзвуковом-режиме полета, когда воздух частично обтекает самолет на сверхзвуковой скорости, а частично - на дозвуковой.

"Самолет при этом необязательно летит на сверхзвуковой скорости, но воздух обтекает верхнюю поверхность его крыла с большей скоростью, чем нижнюю, что приводит к местному скачку уплотнения", - говорит Ирвин.

По его словам, для возникновения эффекта Прандтля-Глоерта необходимы определенные климатические условия (а именно - теплый и влажный воздух), с которыми истребители палубной авиации сталкиваются чаще других самолетов.

Все, что вам остается сделать, - попросить об услуге профессионального фотографа, и - вуаля! - ваш самолет запечатлели в окружении эффектного облака водяного пара, которое многие из нас ошибочно принимают за признак выхода на сверхзвук.

  • Прочитать можно на сайте

Звуковой барьер — это явление, возникающее в полёте самолёта или ракеты в момент перехода от дозвуковой к сверхзвуковой скорости полёта в атмосфере. При приближении скорости самолёта к скорости звука (1200 км/ч) в воздухе перед ним возникает тонкая область, в которой происходит резкое увеличение давления и плотности воздушной среды. Это уплотнение воздуха перед летящим самолётом называется ударной волной. На земле прохождение ударной волны воспринимается как хлопок, похожий на звук выстрела. Превысив скорость звука, самолёт проходит сквозь эту область повышенной плотности воздуха, как бы прокалывает её – преодолевает звуковой барьер. Долгое время преодоление звукового барьера представлялось серьёзной проблемой в развитии авиации. Для её решения потребовалось изменить профиль и форму крыла самолёта (оно стало более тонким и стреловидным), сделать переднюю часть фюзеляжа более заострённой и снабдить самолёты реактивными двигателями. Впервые скорость звука была превышена в 1947 г. Ч. Йигером на самолёте Белл Х-1 (США) с жидкостным ракетным двигателем, запущенном с самолёта Боинг В-29. В России звуковой барьер первым преодолел в 1948 г. лётчик О. В. Соколовский на экспериментальном самолёте Ла-176 с турбореактивным двигателем.






Видео.

Скорость Звука.

Скорость распространения (относительно среды) малых возмущений давления. В совершенном газе (например, в воздухе при умеренных температурах и давлении) С. з. не зависит от характера распространяющегося малого возмущения и одинакова как для монохроматических колебаний различной частоты (), так и для слабых ударных волн. В совершенном газе в рассматриваемой точке пространства С. з. а зависит только от состава газа и его абсолютной температуры Т:
a = (dp/d(())1/2 = ((()p/(())1/2 = ((()RT/(())1/2,
где dp/d(() - производная давления по плотности для изоэнтропического процесса, (-) - показатель адиабаты, R - универсальная газовая постоянная, (-) - молекулярная масса (в воздухе a 20,1T1/2 м/с. при 0(°)C a = 332 м/с).
В газе с физико-химическими превращениями, например, в диссоциирующем газе, С. з. будет зависеть от того, как - равновесно или неравновесно - протекают эти процессы в волне возмущения. При термодинамическом равновесии С. з. зависит только от состава газа, его температуры и давления. При неравновесном протекании физико-химических процессов имеет место дисперсия звука, то есть С. з. зависит не только от состояния среды, но и от частоты колебаний (). Высокочастотные колебания ((тт), ()) - время релаксации) распространяются с замороженной С. з. aj, низкочастотные ((,) 0) - с равновесной С. з. ae, причём aj > ae. Отличие aj от ai как правило, невелико (в воздухе при Т = 6000(°)С и p = 105 Па оно составляет около 15%). В жидкостях С. з. значительно выше, чем в газе (в воде a 1500 м/с)

14 октября 1947 года человечество преодолело очередной рубеж. Рубеж вполне объективный, выражающийся в конкретной физической величине — скорости звука в воздухе, которая в условиях земной атмосферы находится в зависимости от её температуры и давления в пределах 1100–1200 км/ч. Сверхзвуковая скорость покорилась американскому пилоту Чаку Йегеру (Charles Elwood «Chuck» Yeager) — молодому ветерану Второй мировой, обладавшему незаурядной отвагой и отменной фотогеничностью, благодаря чему он немедленно стал популярен у себя на родине так же, как спустя 14 лет — Юрий Гагарин .

А отвага для перехода через звуковой барьер действительно требовалась. Советский пилот Иван Федоров , повторивший достижение Йегера год спустя, в 1948 году, вспоминал тогдашние свои ощущения : «Перед полетом на преодоление звукового барьера стало очевидным, что гарантии выжить после него нет никакой. Никто не знал практически, что это такое и выдержит ли конструкция самолета напор стихии. Но об этом старались не думать».

Действительно, полной ясности относительно того, как себя поведет машина на сверхзвуковой скорости, не было. У авиаконструкторов были ещё свежи в памяти воспоминания о внезапной напасти 30-х годов, когда с ростом скоростей самолетов пришлось срочно решать проблему флаттера — автоколебаний, возникающих как в жестких конструкциях самолета, так и в его обшивке, в считанные минуты разрывающих самолет на части. Процесс развивался лавинообразно, стремительно, пилоты не успевали изменить режим полета, и машины рассыпались в воздухе на части. Довольно долго математики и конструкторы в различных странах бились над решением этой проблемы. В конце концов теорию явления создал тогда ещё молодой российский математик Мстислав Всеволодович Келдыш (1911–1978), впоследствии президент АН СССР. С помощью этой теории удалось найти способ навсегда избавиться от неприятного явления.

Вполне понятно, что столь же неприятных сюрпризов ожидали и от звукового барьера. Численное решение сложных дифференциальных уравнений аэродинамики в отсутствие мощных вычислительных машин было невозможно, и приходилось полагаться на «продувку» моделей в аэродинамических трубах. Но из качественных соображений было ясно, что при достижении скорости звука вблизи самолета возникает ударная волна. Наиболее ответственный момент — преодоление звукового барьера, когда скорость самолета сравнивается со скоростью звука. В этот момент разность давлений по разные стороны фронта волны быстро нарастает, и если момент продлится дольше мгновения, самолет может развалиться не хуже чем от флаттера. Порой при преодолении звукового барьера с недостаточным ускорением созданная самолетом ударная волна даже вышибает стекла из окон домов на земле под ним.

Отношение скорости самолета к скорости звука называют числом Маха (по имени знаменитого немецкого механика и философа Эрнста Маха). При прохождении звукового барьера пилоту кажется, что число М перескакивает через единицу скачкообразно: Чак Йегер увидел, как стрелка махометра скакнула с 0,98 на 1,02, после чего в кабине наступила «божественная» тишина — на самом деле, кажущаяся: просто уровень звукового давления в кабине самолета падает в несколько раз. Этот момент «очищения от звука» очень коварен, он стоил жизни многим испытателям. Но опасность развалиться для его самолета Х-1 была невелика.

Самолет Х-1 , изготовленный компанией Bell Aircraft в январе 1946 года, был чисто исследовательским летательным аппаратом, предназначенным для покорения звукового барьера и ни для чего более. Несмотря на то что машина была заказана министерством обороны, вместо оружия её нашпиговали научной аппаратурой, отслеживающей режимы работы узлов, приборов и механизмов. Х-1 походил на современную крылатую ракету. Имел один ракетный двигатель Reaction Motors тягой 2722 кГ. Максимальный взлетный вес — 6078 кг. Длина — 9,45 м, высота — 3,3 м, размах крыльев — 8,53 м. Максимальная скорость — на высоте 18290 м 2736 км/ч. Машина запускалась со стратегического бомбардировщика В-29 , а приземлялась на стальные «лыжи» на высохшем соляном озере.

Не менее впечатляют и « тактико-технические параметры» её пилота. Чак Йегер родился 13 февраля 1923 года. После школы пошел в летное училище, и после его окончания отправился воевать в Европу . Сбил один Мессершмит-109 . Сам был сбит в небе Франции , но его спасли партизаны. Как ни в чем не бывало вернулся на базу в Англию . Однако бдительная служба контрразведки, не поверив чудесному избавлению от плена, отстранила пилота от полетов и направила его в тыл. Честолюбивый Йегер добился приема у главнокомандующего союзными войсками в Европе генерала Эйзенхауэра, который Йегеру поверил. И не ошибся — молодой пилот за полгода, остававшиеся до окончания войны, совершил 64 боевых вылета, сбил 13 вражеских самолетов, причем 4 в одном бою. И вернулся на родину в звании капитана с прекрасным досье, в котором значилось, что он обладает феноменальной летной интуицией, невероятным хладнокровием и удивительной выдержкой в любой критической ситуации. Благодаря такой характеристике он попал в команду испытателей-сверхзвуковиков, которых отбирали и готовили столь же тщательно, как впоследствии — астронавтов.

Переименовав Х-1 в «Пленительную Гленис» (Glamorous Glennis) в честь своей жены, Йегер не единожды устанавливал на нем рекорды. В конце октября 1947 года пал прежний рекорд высоты — 21 372 м. В декабре 1953 года новая модификация машины — X-1A развила скорость 2,35 М — почти 2800 км/ч, а полгода спустя поднялась на высоту 27 430 м. А до того были испытания ряда запускавшихся в серию истребителей и обкатка нашего МиГ-15 , захваченного и переправленного в Америку во время корейской войны. Впоследствии Йегер командовал различными испытательными подразделениями ВВС как в США , так и на американских базах в Европе и Азии, принимал участие в боевых действиях во Вьетнаме , тренировал пилотов. В отставку он вышел в феврале 1975 года в звании бригадного генерала, налетав за время доблестной службы 10 тыс. часов, обкатав 180 различных сверхзвуковых моделей и собрав уникальную коллекцию орденов и медалей. В середине 80-х годов был снят фильм, основанный на биографии бравого парня, первым в мире покорившего звуковой барьер, и после этого Чак Йегер стал даже не героем, а общенациональной реликвией. В последний раз он сел за штурвал F-16 14 октября 1997 года и преодолел звуковой барьер на пятидесятую годовщину своего исторического полета. Было Йегеру тогда 74 года. В общем, как сказал поэт, гвозди бы делать из этих людей.

Таких людей немало и по другую сторону океана… Советские конструкторы начали примеряться к покорению звукового барьера одновременно с американскими. Но для них это было не самоцелью, а актом вполне прагматичным. Если Х-1 был сугубо исследовательской машиной, то у нас звуковой барьер штурмовали на прототипах истребителей, которые предполагалось запустить в серию для укомплектования ими частей ВВС.

В соревнование включились несколько конструкторских бюро — ОКБ Лавочкина , ОКБ Микояна и ОКБ Яковлева , — в которых параллельно разрабатывались самолеты со стреловидным крылом, что тогда было революционным конструктивным решением. К сверхзвуковому финишу они пришли в таком порядке: Ла-176 (1948), МиГ-15 (1949), Як-50 (1950). Однако там проблема решалась в довольно сложном контексте: военная машина должна обладать не только высокой скоростью, но и множеством иных качеств — маневренность, живучесть, минимальное время предполетной подготовки, мощное вооружение, внушительный боекомплект и т.д. и т.п. Следует отметить и то, что в советские времена на решение государственных приемочных комиссий зачастую влияли не только объективные факторы, но и субъективные моменты, связанные с политическими маневрами разработчиков. Вся эта совокупность обстоятельств привела к тому, что в серию был запущен истребитель МиГ-15 , который прекрасно показал себя на локальных аренах военных действий 50-х годов. Именно эту машину, захваченную в Корее, как было выше сказано, «объезжал» Чак Йегер.

В Ла-176 была применена рекордная по тем временам стреловидность крыла, равная 45 градусам. Турбореактивный двигатель ВК-1 обеспечивал тягу в 2700 кГ. Длина — 10,97 м, размах крыльев — 8,59 м, площадь крыла 18,26 кв.м. Взлетная масса — 4636 кг. Потолок — 15 000 м. Дальность полета — 1000 км. Вооружение — одна 37-мм пушка и две 23-мм. Машина была готова осенью 1948 года, в декабре начались её летные испытания в Крыму на военном аэродроме близ города Саки . Среди тех, кто руководил испытаниями, был и будущий академик Владимир Васильевич Струминский (1914–1998), пилотами экспериментального самолета были капитан Олег Соколовский и полковник Иван Федоров, получивший впоследствии звание Героя Советского Союза. Соколовский по нелепой случайности погиб во время четвертого полета, забыв закрыть фонарь кабины.

Звуковой барьер полковник Иван Федоров преодолел 26 декабря 1948 года. Поднявшись на высоту 10 тыс. метров, он отклонил ручку управления от себя и начал разгоняться на пикировании. «С большой высоты разгоняю свой 176-й, — вспоминал пилот . — Слышен нудный негромкий свист. Наращивая скорость, самолет мчится к земле. На шкале махометра стрелка с трехзначных цифр переходит на четырехзначные. Самолет дрожит, словно в лихорадке. И вдруг — тишина! Взят звуковой барьер. Последующая расшифровка осциллограмм показала, что число М перевалило за единицу». Произошло это на высоте 7 000 метров, где была зафиксирована скорость 1,02М.

В дальнейшем скорость пилотируемых самолетов продолжала неуклонно наращиваться за счет увеличения мощности двигателей, применения новых материалов и оптимизации аэродинамических параметров. Однако этот процесс не безграничен. С одной стороны, он тормозится соображениями рациональности, когда учитывается расход топлива, стоимость разработки, безопасность полета и прочие не праздные соображения. И даже в военной авиации, где деньги и безопасность пилота не столь уж и значимы, скорости наиболее «шустрых» машин находятся в диапазоне от 1,5М до 3М. Больше как будто бы не требуется. (Рекорд скорости для пилотируемых аппаратов с реактивными двигателями принадлежит американскому самолету-разведчику SR-71 и составляет 3,2М.)

С другой стороны, существует непреодолимый тепловой барьер: при определенной скорости нагревание корпуса машины трением о воздух происходит настолько быстро, что невозможно отведение тепла с его поверхности. Расчеты показывают, что при нормальном давлении это должно происходить на скорости порядка 10М.

Тем не менее предел в 10М все-таки был достигнут все на том же полигоне Эдвардс. Произошло это в 2005 году. Рекордсменом стал беспилотный ракетный самолет Х-43А, изготовленный в рамках 7-летней грандиозной программы Hiper-X по отработке технологий нового типа, призванных радикально изменить облик ракетно-космической техники будущего. Его стоимость составляет $230 млн. Рекорд был установлен на высоте 33 тыс. метров. В беспилотнике использована новая система разгона. Вначале отрабатывает традиционная твердотопливная ракета, с помощью которой Х-43А достигает скорости 7М, а затем включается двигатель нового типа — гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД, или скрамджет), в котором в качестве окислителя используется обычный атмосферный воздух, а топливом является газообразный водород (прямо-таки классическая схема неуправляемого взрыва).

В соответствии с программой были изготовлены три беспилотных модели, которые после выполнения задания были утоплены в океане. Следующий этап предполагает создание пилотируемых машин. После их испытания полученные результаты будут учтены при создании самых разнообразных «полезных» аппаратов. Помимо летательных аппаратов для нужд NASA будут создаваться гиперзвуковые военные машины — бомбардировщики, разведчики и транспортники. Boeing, которая принимает участие в программе Hiper-X , планирует к 2030–2040 годам создать гиперзвуковой авиалайнер на 250 пассажиров. Вполне понятно, что иллюминаторов, которые на таких скоростях ломают аэродинамику и не выдерживают теплового нагрева, в нем не будет. Вместо иллюминаторов предполагаются экраны с видеозаписью проплывающих облаков.

Сомневаться не приходится, этот вид транспорта будет востребован, поскольку чем дальше, тем больше дорожает время, вмещающее все больше и больше в единицу времени эмоций, заработанных долларов и прочих компонентов современной жизни. В связи с этим не приходится сомневаться и в том, что когда-нибудь люди превратятся в бабочек-однодневок: один день будет насыщен как вся нынешняя (скорее — уже вчерашняя) человеческая жизнь. И можно предположить, что кто-то или что-то реализует в отношении человечества программу Hiper-X .

Звуковой барьер

Звуково́й барье́р

явление, возникающее в полёте самолёта или ракеты в момент перехода от дозвуковой к сверхзвуковой скорости полёта в атмосфере. При приближении скорости самолёта к скорости звука (1200 км/ч) в воздухе перед ним возникает тонкая область, в которой происходит резкое увеличение давления и плотности воздушной среды. Это уплотнение воздуха перед летящим самолётом называется ударной волной. На земле прохождение ударной волны воспринимается как хлопок, похожий на звук выстрела. Превысив , самолёт проходит сквозь эту область повышенной плотности воздуха, как бы прокалывает её – преодолевает звуковой барьер. Долгое время преодоление звукового барьера представлялось серьёзной проблемой в развитии авиации. Для её решения потребовалось изменить профиль и форму крыла самолёта (оно стало более тонким и стреловидным), сделать переднюю часть фюзеляжа более заострённой и снабдить самолёты реактивными двигателями. Впервые скорость звука была превышена в 1947 г. Ч. Йигером на самолёте Х-1 (США) с жидкостным ракетным двигателем, запущенном с самолёта В-29. В России звуковой барьер первым преодолел в 1948 г. О. В. Соколовский на экспериментальном самолёте Ла-176 с турбореактивным двигателем.

Энциклопедия «Техника». - М.: Росмэн . 2006 .

Звуковой барьер

резкое увеличение сопротивления аэродинамического летательного аппарата при Маха числах полёта M(∞), несколько превышающих критическое число M*. Причина состоит в том, что при числах M(∞) > M* наступает , сопровождающийся появлением волнового сопротивления. Коэффициент волнового сопротивления летательных аппаратов очень быстро возрастает с ростом числа M, начиная с M(∞) = M*.
Наличие З. б. затрудняет достижение скорости полёта, равной скорости звука, и последующего перехода к сверхзвуковому полёту. Для этого оказалось необходимым создать самолёты с тонкими стреловидными крыльями, что позволило значительно снизить сопротивление, и реактивными двигателями, у которых с ростом скорости тяга возрастает.
В СССР скорость, равная скорости звука, впервые была достигнута на самолёте Ла-176 в 1948.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


Смотреть что такое "звуковой барьер" в других словарях:

    Барьер - все рабочие скидки Барьер в категории Дом и дача

    Звуковой барьер в аэродинамике название ряда явлений, сопровождающих движение летательного аппарата (например, сверхзвукового самолёта, ракеты) на скоростях, близких к скорости звука или превышающих её. Содержание 1 Ударная волна,… … Википедия

    ЗВУКОВОЙ БАРЬЕР, причина трудностей в авиации при увеличении скорости полета свыше скорости звука (СВЕРХЗВУКОВАЯ СКОРОСТЬ). Приближаясь к скорости звука, самолет испытывает неожиданное увеличение сопротивления и потерю аэродинамической ПОДЪЕМНОЙ… … Научно-технический энциклопедический словарь

    звуковой барьер - garso barjeras statusas T sritis fizika atitikmenys: angl. sonic barrier; sound barrier vok. Schallbarriere, f; Schallmauer, f rus. звуковой барьер, m pranc. barrière sonique, f; frontière sonique, f; mur de son, m … Fizikos terminų žodynas

    звуковой барьер - garso barjeras statusas T sritis Energetika apibrėžtis Staigus aerodinaminio pasipriešinimo padidėjimas, kai orlaivio greitis tampa garso greičiu (viršijama kritinė Macho skaičiaus vertė). Aiškinamas bangų krize dėl staiga padidėjusio… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    Резкое увеличение сопротивления аэродинамического при приближении скорости полёта ЛА к скорости звука (превышении кри тич. значения Маха числа полёта). Объясняется волновым кризисом, сопровождающимся ростом волнового сопротивления. Преодолеть 3.… … Большой энциклопедический политехнический словарь

    Звуковой барьер - резкое увеличение сопротивления воздушной среды движению ЛА при. подходе к скоростям, близким к скорости распространения звука. Преодоление 3. б. стало возможным за счёт совершенствования аэродинамических форм самолётов и применения мощных… … Словарь военных терминов

    звуковой барьер - звуковой барьер — резкое увеличение сопротивления аэродинамического летательного аппарата при Маха числах полёта M∞, несколько превышающих критическое число M*. Причина состоит в том, что при числах M∞ > Энциклопедия «Авиация»

    звуковой барьер - звуковой барьер — резкое увеличение сопротивления аэродинамического летательного аппарата при Маха числах полёта M∞, несколько превышающих критическое число M*. Причина состоит в том, что при числах M∞ > M* наступает волновой кризис,… … Энциклопедия «Авиация»

    - (франц. barriere застава). 1) ворота в крепостях. 2) в манежах и цирках загородка, бревно, шест, через которые прыгает лошадь. 3) знак, до которого доходят бойцы на поединке. 4) перила, решетка. Словарь иностранных слов, вошедших в состав… … Словарь иностранных слов русского языка

    БАРЬЕР, а, муж. 1. Преграда (род стенки, перекладина), поставленная на пути (при скачках, беге). Взять б. (преодолеть его). 2. Загородка, ограждение. Б. ложи, балкона. 3. перен. Преграждение, препятствие для чего н. Река естественный б. для… … Толковый словарь Ожегова

Книги

  • Вегас: Правдивая история (DVD) , Надери Амир. Некоторые люди ищут "американскую мечту" в самых странных местах… Когда-то Эдди Паркер и его жена Трейси были заядлыми игроманами, что неудивительно: они живут в Лас-Вегасе, где играют все.…

Первый пилот, сумевший преодолеть звуковой барьер - Чарльз Йегер, совершивший полет на самолете Bell X-1 осенью 1947 года. В Советском Союзе данный подвиг повторили летчики Федоров и Соколовский, пилотировавшие истребитель ЛА-176 на высоте более 15 тысяч метров. Сверхзвуковая скорость судна составляла 1104 км/час, на которой он мог пройти порядком тысячи километров без дозаправок. Число маха - это отношение скорости звука к скорости, с которой передвигается летательный аппарат. Названо в честь известного австрийского физика Эрнста Маиевского, изучавшего причины возникновения ударных волн и аэродинамические процессы при сверхзвуковом передвижении тел.

Что такое звуковой барьер?

Звуковым барьером в аэродинамике называют целый ряд явлений, которыми сопровождается передвижение летательного средства на скорости звука (340 м/с) либо выше. Звуковой удар возникает из-за скачков давления и сопровождается «хлопком», воспринимаемым наблюдателем как звук взрыва. В результате волнового кризиса изменяется характер обтекания самолета, появляются вибрации, снижается подъемная сила и растет лобовое сопротивление.

Потребность в преодолении звукового барьера возникла в годы Второй мировой войны, когда многие летчики замечали, что при увеличении скорости истребителя ухудшается его управляемость и ряд других важных характеристик, таких как корректировка элеронов и воздушных рулей. Пилоты самолетов поршневого типа, предпринимавшие попытки развить предельные скорости, неизбежно сталкивались с волновым кризисом, выбраться из которого без пикирования не представлялось возможным.

Значимую роль в задаче объяснения и преодоления звукового барьера сыграли научные работы, посвященные исследованиям сверхзвукового движения газа.

Пока самолет передвигается с небольшой скоростью (до 420 км/час) на высоте до 3 тысяч метров, вычислить точные параметры полета довольно просто. Однако в случае преодоления звукового барьера самолетом падает не только температура за бортом, но и плотность воздушной среды. Когда приборы демонстрируют эквивалентные показания скорости на высоте 2 тысячи метров и 10 тысяч метров, в условиях разреженного воздуха реальная скорость будет больше.

Величина сверхзвуковой скорости полета

На скорости звука воздушное пространство перестает быть однородным и сильно затрудняет передвижение низкоскоростных летательных аппаратов. Создается среда, в которой возникают скачки уплотнения и изменение характера обтекания самолета, что создает предпосылки для волнового кризиса. Скачок уплотнения увеличивает энтропию газа, которая уменьшается в процессе прохождения звукового барьера.

Особенности сверхзвукового полета

Переход на сверхзвуковую скорость сопровождается ударной волной, возникающей из-за разницы давления. В случае, если она будет длиться больше секунды, фюзеляж судна может не выдержать подобных нагрузок, что приведет к его крушению. Если посмотреть на преодоление самолетом звукового барьера на видео, то можно заметить, что ударной волной разрушаются практически все стекла жилых домов, расположенных на поверхности земли.

После того как американский летчик Чарльз Йегер сумел впервые преодолеть звуковой барьер, он был поражен воцарившейся в кабине самолета «божественной тишиной». В момент, когда стрелке махметра удается перевалить за отметку 1.0, звуковое давление внутри судна заметно уменьшается. Однако повышается риск деформации фюзеляжа и других частей летательного аппарата.

На показатели энергетики (интенсивности) скачка уплотнения оказывают влияние условия окружающей среды, конструктивные особенности самолета и скорость его передвижения. Пилотам гиперзвуковых пассажирских лайнеров «Concorde» и «ТУ-144» было дозволено преодолевать звуковой барьер исключительно над поверхностью океана в воздушном пространстве, превышающем на несколько тысяч метров высоту передвижения стандартных летательных аппаратов гражданской авиации.

Вы когда-нибудь слышали хлопок от самолета, переходящего сверхзвуковой барьер?

Да Нет

Что происходит с самолетом во время преодоления звукового барьера?

Что происходит с летательным аппаратом при достижении скорости звука? Начинается образование ударных волн, которые появляются в хвостовой части самолета, в задней и фронтальной кромке, а также на острие фюзеляжа. Скачок уплотнения обладает очень малой толщиной, а фронт ударной волны отличается кардинальными изменениями, происходящими со свойствами потока. Его скоростные показатели снижаются по отношению к телу, и скорость приобретает свойства дозвуковой. Кинетическая энергия частично преображается в газовую (внутреннюю).

Хлопок сверхзвукового самолета представляет собой «звуковой удар», который возникает из-за скачков давления воздуха. Хлопок появляется в результате прохождения основной волны и воспринимается слушателем каждый раз, когда самолет пролетает над его головой.

Масштаб подобных изменений прямо пропорционален скорости гиперзвукового потока. Число маха в данном случае превышает 5, а температурные показатели серьезно повышаются, что выступает причиной ряда проблем для летательных аппаратов, передвигающихся на сверхзвуковых скоростях. Повреждение термозащитных оболочек спровоцировало крушение многоразового космического транспортного корабля NASA под названием «Columbia» в 2003 году. Шаттл входил в земную атмосферу для совершения посадки и был поврежден ударной волной высокой силы.

Российский пассажирский сверхзвуковой самолет

Первый пассажирский самолет, который преодолел звуковой барьер, - ТУ-144, созданный инженерами из конструкторского бюро Туполева. Для преодоления звукового барьера лайнер был выполнен в форме бесхвостового низкоплана, оснащенного дополнительными силовыми установками. ТУ-144 был лишен привычных для летательных средств предыдущего поколения закрылков и предкрылков, а переход на гиперзвуковой режим осуществлялся благодаря сложной процедуре перераспределения топлива в задние центровочные баки.

Сверхзвуковой высотный бомбардировщик Валькирия

Без затруднений преодолевает звуковой барьер высотный бомбардировщик «Валькирия» XB-70, развивающий скорость свыше трех махов (3673 км/час) и поднимающийся на высоту свыше 20 тысяч метров. Для передвижения на гиперзвуковой скорости конструкторы были вынуждены снизить взлетную массу, а также перевести самолет на пентаборан (бороводородную топливную смесь), обладающую повышенной энергией сгорания. Бомбардировщик представляет собой «бесхвостку», выполненную из высокопрочной инструментальной стали.



Статьи по теме: